2,611 research outputs found

    Production of proton-rich nuclei around Z=84-90 in fusion-evaporation reactions

    Full text link
    Within the framework of the dinuclear system model, production cross sections of proton-rich nuclei with charged numbers of Z=84-90 are investigated systematically. Possible combinations with the 28^{28}Si, 32^{32}S, 40^{40}Ar bombarding the target nuclides 165^{165}Ho, 169^{169}Tm, 170−174^{170-174}Yb, 175,176^{175,176}Lu, 174,176−180^{174,176-180}Hf and 181^{181}Ta are analyzed thoroughly. The optimal excitation energies and evaporation channels are proposed to produce the proton-rich nuclei. The systems are feasible to be constructed in experiments. It is found that the neutron shell closure of N=126 is of importance during the evaporation of neutrons. The experimental excitation functions in the 40^{40}Ar induced reactions can be nicely reproduced. The charged particle evaporation is comparable with neutrons in cooling the excited proton-rich nuclei, in particular for the channels with α\alpha and proton evaporation. The production cross section increases with the mass asymmetry of colliding systems because of the decrease of the inner fusion barrier. The channels with pure neutron evaporation depend on the isotopic targets. But it is different for the channels with charged particles and more sensitive to the odd-even effect.Comment: 15 pages, 10 figures. arXiv admin note: text overlap with arXiv:0803.1117, arXiv:0707.258

    On several families of elliptic curves with arbitrary large Selmer groups

    Full text link
    In this paper, we calculate the ϕ(ϕ^)− \phi (\hat{\phi})-Selmer groups S^{(\phi)} (E / \Q) and S^{(\hat{\varphi})} (E^{\prime} / \Q) of elliptic curves y2=x(x+ϵpD)(x+ϵqD) y^{2} = x (x + \epsilon p D) (x + \epsilon q D) via descent theory (see [S, Chapter X]), in particular, we obtain that the Selmer groups of several families of such elliptic curves can be arbitrary large.Comment: 22 page
    • …
    corecore