20,007 research outputs found
Alternation in Quantum Programming: From Superposition of Data to Superposition of Programs
We extract a novel quantum programming paradigm - superposition of programs -
from the design idea of a popular class of quantum algorithms, namely quantum
walk-based algorithms. The generality of this paradigm is guaranteed by the
universality of quantum walks as a computational model. A new quantum
programming language QGCL is then proposed to support the paradigm of
superposition of programs. This language can be seen as a quantum extension of
Dijkstra's GCL (Guarded Command Language). Surprisingly, alternation in GCL
splits into two different notions in the quantum setting: classical alternation
(of quantum programs) and quantum alternation, with the latter being introduced
in QGCL for the first time. Quantum alternation is the key program construct
for realizing the paradigm of superposition of programs.
The denotational semantics of QGCL are defined by introducing a new
mathematical tool called the guarded composition of operator-valued functions.
Then the weakest precondition semantics of QGCL can straightforwardly derived.
Another very useful program construct in realizing the quantum programming
paradigm of superposition of programs, called quantum choice, can be easily
defined in terms of quantum alternation. The relation between quantum choices
and probabilistic choices is clarified through defining the notion of local
variables. We derive a family of algebraic laws for QGCL programs that can be
used in program verification, transformations and compilation. The expressive
power of QGCL is illustrated by several examples where various variants and
generalizations of quantum walks are conveniently expressed using quantum
alternation and quantum choice. We believe that quantum programming with
quantum alternation and choice will play an important role in further
exploiting the power of quantum computing.Comment: arXiv admin note: substantial text overlap with arXiv:1209.437
Bisimulation for quantum processes
In this paper we introduce a novel notion of probabilistic bisimulation for
quantum processes and prove that it is congruent with respect to various
process algebra combinators including parallel composition even when both
classical and quantum communications are present. We also establish some basic
algebraic laws for this bisimulation. In particular, we prove uniqueness of the
solutions to recursive equations of quantum processes, which provides a
powerful proof technique for verifying complex quantum protocols.Comment: Journal versio
- …