20,007 research outputs found

    Alternation in Quantum Programming: From Superposition of Data to Superposition of Programs

    Full text link
    We extract a novel quantum programming paradigm - superposition of programs - from the design idea of a popular class of quantum algorithms, namely quantum walk-based algorithms. The generality of this paradigm is guaranteed by the universality of quantum walks as a computational model. A new quantum programming language QGCL is then proposed to support the paradigm of superposition of programs. This language can be seen as a quantum extension of Dijkstra's GCL (Guarded Command Language). Surprisingly, alternation in GCL splits into two different notions in the quantum setting: classical alternation (of quantum programs) and quantum alternation, with the latter being introduced in QGCL for the first time. Quantum alternation is the key program construct for realizing the paradigm of superposition of programs. The denotational semantics of QGCL are defined by introducing a new mathematical tool called the guarded composition of operator-valued functions. Then the weakest precondition semantics of QGCL can straightforwardly derived. Another very useful program construct in realizing the quantum programming paradigm of superposition of programs, called quantum choice, can be easily defined in terms of quantum alternation. The relation between quantum choices and probabilistic choices is clarified through defining the notion of local variables. We derive a family of algebraic laws for QGCL programs that can be used in program verification, transformations and compilation. The expressive power of QGCL is illustrated by several examples where various variants and generalizations of quantum walks are conveniently expressed using quantum alternation and quantum choice. We believe that quantum programming with quantum alternation and choice will play an important role in further exploiting the power of quantum computing.Comment: arXiv admin note: substantial text overlap with arXiv:1209.437

    Bisimulation for quantum processes

    Full text link
    In this paper we introduce a novel notion of probabilistic bisimulation for quantum processes and prove that it is congruent with respect to various process algebra combinators including parallel composition even when both classical and quantum communications are present. We also establish some basic algebraic laws for this bisimulation. In particular, we prove uniqueness of the solutions to recursive equations of quantum processes, which provides a powerful proof technique for verifying complex quantum protocols.Comment: Journal versio
    • …
    corecore