93 research outputs found
Learning Adaptive Discriminative Correlation Filters via Temporal Consistency Preserving Spatial Feature Selection for Robust Visual Tracking
With efficient appearance learning models, Discriminative Correlation Filter
(DCF) has been proven to be very successful in recent video object tracking
benchmarks and competitions. However, the existing DCF paradigm suffers from
two major issues, i.e., spatial boundary effect and temporal filter
degradation. To mitigate these challenges, we propose a new DCF-based tracking
method. The key innovations of the proposed method include adaptive spatial
feature selection and temporal consistent constraints, with which the new
tracker enables joint spatial-temporal filter learning in a lower dimensional
discriminative manifold. More specifically, we apply structured spatial
sparsity constraints to multi-channel filers. Consequently, the process of
learning spatial filters can be approximated by the lasso regularisation. To
encourage temporal consistency, the filter model is restricted to lie around
its historical value and updated locally to preserve the global structure in
the manifold. Last, a unified optimisation framework is proposed to jointly
select temporal consistency preserving spatial features and learn
discriminative filters with the augmented Lagrangian method. Qualitative and
quantitative evaluations have been conducted on a number of well-known
benchmarking datasets such as OTB2013, OTB50, OTB100, Temple-Colour, UAV123 and
VOT2018. The experimental results demonstrate the superiority of the proposed
method over the state-of-the-art approaches
Recent discoveries about HIF-1α related mechanism and application
Hypoxia-inducible factor 1-alpha (HIF-1α) plays a pivotal role in a myriad of cellular processes, orchestrating numerous pathways that are intrinsically linked to the progression of cancer. The scientific community has been engrossed in studying HIF-1α for an extended period, with novel findings being unveiled consistently. A significant portion of these investigations delves into understanding the intricate mechanisms underpinning HIF-1α’s function and its potential applications in therapeutic interventions. This article offers a comprehensive overview of some of the most recent scholarly contributions in this domain. Key mechanisms explored include the mitochondrial reactive oxygen species (mROS)/HIF-1α pathway, the influence of mechanical stress on the HIF-1α pathway, the mechanistic target of rapamycin complex 1 (mTORC1)/eukaryotic translation initiation factor 4E (EIF4E) pathway, and the microRNAs-34a (miR- 34a)/glucose transport 1 (GLUT1) pathway. Beyond mechanisms, the article also sheds light on the potential applications of these findings, particularly in the realm of drug development aimed at treating cancer and a spectrum of other diseases. In addition to presenting the core research, this review endeavors to furnish readers with pertinent background information on associated terminologies. While it’s challenging to encapsulate the entirety of recent advancements in a single article, the aim here is to inspire and pave the way for future explorations into the mechanisms and therapeutic applications of HIF-1α
Micro Fourier Transform Profilometry (FTP): 3D shape measurement at 10,000 frames per second
Recent advances in imaging sensors and digital light projection technology
have facilitated a rapid progress in 3D optical sensing, enabling 3D surfaces
of complex-shaped objects to be captured with improved resolution and accuracy.
However, due to the large number of projection patterns required for phase
recovery and disambiguation, the maximum fame rates of current 3D shape
measurement techniques are still limited to the range of hundreds of frames per
second (fps). Here, we demonstrate a new 3D dynamic imaging technique, Micro
Fourier Transform Profilometry (FTP), which can capture 3D surfaces of
transient events at up to 10,000 fps based on our newly developed high-speed
fringe projection system. Compared with existing techniques, FTP has the
prominent advantage of recovering an accurate, unambiguous, and dense 3D point
cloud with only two projected patterns. Furthermore, the phase information is
encoded within a single high-frequency fringe image, thereby allowing
motion-artifact-free reconstruction of transient events with temporal
resolution of 50 microseconds. To show FTP's broad utility, we use it to
reconstruct 3D videos of 4 transient scenes: vibrating cantilevers, rotating
fan blades, bullet fired from a toy gun, and balloon's explosion triggered by a
flying dart, which were previously difficult or even unable to be captured with
conventional approaches.Comment: This manuscript was originally submitted on 30th January 1
Temporal phase unwrapping using deep learning
The multi-frequency temporal phase unwrapping (MF-TPU) method, as a classical
phase unwrapping algorithm for fringe projection profilometry (FPP), is capable
of eliminating the phase ambiguities even in the presence of surface
discontinuities or spatially isolated objects. For the simplest and most
efficient case, two sets of 3-step phase-shifting fringe patterns are used: the
high-frequency one is for 3D measurement and the unit-frequency one is for
unwrapping the phase obtained from the high-frequency pattern set. The final
measurement precision or sensitivity is determined by the number of fringes
used within the high-frequency pattern, under the precondition that the phase
can be successfully unwrapped without triggering the fringe order error.
Consequently, in order to guarantee a reasonable unwrapping success rate, the
fringe number (or period number) of the high-frequency fringe patterns is
generally restricted to about 16, resulting in limited measurement accuracy. On
the other hand, using additional intermediate sets of fringe patterns can
unwrap the phase with higher frequency, but at the expense of a prolonged
pattern sequence. Inspired by recent successes of deep learning techniques for
computer vision and computational imaging, in this work, we report that the
deep neural networks can learn to perform TPU after appropriate training, as
called deep-learning based temporal phase unwrapping (DL-TPU), which can
substantially improve the unwrapping reliability compared with MF-TPU even in
the presence of different types of error sources, e.g., intensity noise, low
fringe modulation, and projector nonlinearity. We further experimentally
demonstrate for the first time, to our knowledge, that the high-frequency phase
obtained from 64-period 3-step phase-shifting fringe patterns can be directly
and reliably unwrapped from one unit-frequency phase using DL-TPU
LabelPrompt: Effective Prompt-based Learning for Relation Classification
Recently, prompt-based learning has become a very popular solution in many
Natural Language Processing (NLP) tasks by inserting a template into model
input, which converts the task into a cloze-style one to smoothing out
differences between the Pre-trained Language Model (PLM) and the current task.
But in the case of relation classification, it is difficult to map the masked
output to the relation labels because of its abundant semantic information,
e.g. org:founded_by''. Therefore, a pre-trained model still needs enough
labelled data to fit the relations. To mitigate this challenge, in this paper,
we present a novel prompt-based learning method, namely LabelPrompt, for the
relation classification task. It is an extraordinary intuitive approach by a
motivation: ``GIVE MODEL CHOICES!''. First, we define some additional tokens to
represent the relation labels, which regards these tokens as the verbalizer
with semantic initialisation and constructs them with a prompt template method.
Then we revisit the inconsistency of the predicted relation and the given
entities, an entity-aware module with the thought of contrastive learning is
designed to mitigate the problem. At last, we apply an attention query strategy
to self-attention layers to resolve two types of tokens, prompt tokens and
sequence tokens. The proposed strategy effectively improves the adaptation
capability of prompt-based learning in the relation classification task when
only a small labelled data is available. Extensive experimental results
obtained on several bench-marking datasets demonstrate the superiority of the
proposed LabelPrompt method, particularly in the few-shot scenario
Joint Group Feature Selection and Discriminative Filter Learning for Robust Visual Object Tracking
We propose a new Group Feature Selection method for Discriminative
Correlation Filters (GFS-DCF) based visual object tracking. The key innovation
of the proposed method is to perform group feature selection across both
channel and spatial dimensions, thus to pinpoint the structural relevance of
multi-channel features to the filtering system. In contrast to the widely used
spatial regularisation or feature selection methods, to the best of our
knowledge, this is the first time that channel selection has been advocated for
DCF-based tracking. We demonstrate that our GFS-DCF method is able to
significantly improve the performance of a DCF tracker equipped with deep
neural network features. In addition, our GFS-DCF enables joint feature
selection and filter learning, achieving enhanced discrimination and
interpretability of the learned filters.
To further improve the performance, we adaptively integrate historical
information by constraining filters to be smooth across temporal frames, using
an efficient low-rank approximation. By design, specific
temporal-spatial-channel configurations are dynamically learned in the tracking
process, highlighting the relevant features, and alleviating the performance
degrading impact of less discriminative representations and reducing
information redundancy. The experimental results obtained on OTB2013, OTB2015,
VOT2017, VOT2018 and TrackingNet demonstrate the merits of our GFS-DCF and its
superiority over the state-of-the-art trackers. The code is publicly available
at https://github.com/XU-TIANYANG/GFS-DCF
An Accelerated Correlation Filter Tracker
Recent visual object tracking methods have witnessed a continuous improvement
in the state-of-the-art with the development of efficient discriminative
correlation filters (DCF) and robust deep neural network features. Despite the
outstanding performance achieved by the above combination, existing advanced
trackers suffer from the burden of high computational complexity of the deep
feature extraction and online model learning. We propose an accelerated ADMM
optimisation method obtained by adding a momentum to the optimisation sequence
iterates, and by relaxing the impact of the error between DCF parameters and
their norm. The proposed optimisation method is applied to an innovative
formulation of the DCF design, which seeks the most discriminative spatially
regularised feature channels. A further speed up is achieved by an adaptive
initialisation of the filter optimisation process. The significantly increased
convergence of the DCF filter is demonstrated by establishing the optimisation
process equivalence with a continuous dynamical system for which the
convergence properties can readily be derived. The experimental results
obtained on several well-known benchmarking datasets demonstrate the efficiency
and robustness of the proposed ACFT method, with a tracking accuracy comparable
to the start-of-the-art trackers
- …