93 research outputs found

    Learning Adaptive Discriminative Correlation Filters via Temporal Consistency Preserving Spatial Feature Selection for Robust Visual Tracking

    Get PDF
    With efficient appearance learning models, Discriminative Correlation Filter (DCF) has been proven to be very successful in recent video object tracking benchmarks and competitions. However, the existing DCF paradigm suffers from two major issues, i.e., spatial boundary effect and temporal filter degradation. To mitigate these challenges, we propose a new DCF-based tracking method. The key innovations of the proposed method include adaptive spatial feature selection and temporal consistent constraints, with which the new tracker enables joint spatial-temporal filter learning in a lower dimensional discriminative manifold. More specifically, we apply structured spatial sparsity constraints to multi-channel filers. Consequently, the process of learning spatial filters can be approximated by the lasso regularisation. To encourage temporal consistency, the filter model is restricted to lie around its historical value and updated locally to preserve the global structure in the manifold. Last, a unified optimisation framework is proposed to jointly select temporal consistency preserving spatial features and learn discriminative filters with the augmented Lagrangian method. Qualitative and quantitative evaluations have been conducted on a number of well-known benchmarking datasets such as OTB2013, OTB50, OTB100, Temple-Colour, UAV123 and VOT2018. The experimental results demonstrate the superiority of the proposed method over the state-of-the-art approaches

    Recent discoveries about HIF-1α related mechanism and application

    Get PDF
    Hypoxia-inducible factor 1-alpha (HIF-1α) plays a pivotal role in a myriad of cellular processes, orchestrating numerous pathways that are intrinsically linked to the progression of cancer. The scientific community has been engrossed in studying HIF-1α for an extended period, with novel findings being unveiled consistently. A significant portion of these investigations delves into understanding the intricate mechanisms underpinning HIF-1α’s function and its potential applications in therapeutic interventions. This article offers a comprehensive overview of some of the most recent scholarly contributions in this domain. Key mechanisms explored include the mitochondrial reactive oxygen species (mROS)/HIF-1α pathway, the influence of mechanical stress on the HIF-1α pathway, the mechanistic target of rapamycin complex 1 (mTORC1)/eukaryotic translation initiation factor 4E (EIF4E) pathway, and the microRNAs-34a (miR- 34a)/glucose transport 1 (GLUT1) pathway. Beyond mechanisms, the article also sheds light on the potential applications of these findings, particularly in the realm of drug development aimed at treating cancer and a spectrum of other diseases. In addition to presenting the core research, this review endeavors to furnish readers with pertinent background information on associated terminologies. While it’s challenging to encapsulate the entirety of recent advancements in a single article, the aim here is to inspire and pave the way for future explorations into the mechanisms and therapeutic applications of HIF-1α

    Micro Fourier Transform Profilometry (μ\muFTP): 3D shape measurement at 10,000 frames per second

    Full text link
    Recent advances in imaging sensors and digital light projection technology have facilitated a rapid progress in 3D optical sensing, enabling 3D surfaces of complex-shaped objects to be captured with improved resolution and accuracy. However, due to the large number of projection patterns required for phase recovery and disambiguation, the maximum fame rates of current 3D shape measurement techniques are still limited to the range of hundreds of frames per second (fps). Here, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μ\muFTP), which can capture 3D surfaces of transient events at up to 10,000 fps based on our newly developed high-speed fringe projection system. Compared with existing techniques, μ\muFTP has the prominent advantage of recovering an accurate, unambiguous, and dense 3D point cloud with only two projected patterns. Furthermore, the phase information is encoded within a single high-frequency fringe image, thereby allowing motion-artifact-free reconstruction of transient events with temporal resolution of 50 microseconds. To show μ\muFTP's broad utility, we use it to reconstruct 3D videos of 4 transient scenes: vibrating cantilevers, rotating fan blades, bullet fired from a toy gun, and balloon's explosion triggered by a flying dart, which were previously difficult or even unable to be captured with conventional approaches.Comment: This manuscript was originally submitted on 30th January 1

    Temporal phase unwrapping using deep learning

    Full text link
    The multi-frequency temporal phase unwrapping (MF-TPU) method, as a classical phase unwrapping algorithm for fringe projection profilometry (FPP), is capable of eliminating the phase ambiguities even in the presence of surface discontinuities or spatially isolated objects. For the simplest and most efficient case, two sets of 3-step phase-shifting fringe patterns are used: the high-frequency one is for 3D measurement and the unit-frequency one is for unwrapping the phase obtained from the high-frequency pattern set. The final measurement precision or sensitivity is determined by the number of fringes used within the high-frequency pattern, under the precondition that the phase can be successfully unwrapped without triggering the fringe order error. Consequently, in order to guarantee a reasonable unwrapping success rate, the fringe number (or period number) of the high-frequency fringe patterns is generally restricted to about 16, resulting in limited measurement accuracy. On the other hand, using additional intermediate sets of fringe patterns can unwrap the phase with higher frequency, but at the expense of a prolonged pattern sequence. Inspired by recent successes of deep learning techniques for computer vision and computational imaging, in this work, we report that the deep neural networks can learn to perform TPU after appropriate training, as called deep-learning based temporal phase unwrapping (DL-TPU), which can substantially improve the unwrapping reliability compared with MF-TPU even in the presence of different types of error sources, e.g., intensity noise, low fringe modulation, and projector nonlinearity. We further experimentally demonstrate for the first time, to our knowledge, that the high-frequency phase obtained from 64-period 3-step phase-shifting fringe patterns can be directly and reliably unwrapped from one unit-frequency phase using DL-TPU

    LabelPrompt: Effective Prompt-based Learning for Relation Classification

    Full text link
    Recently, prompt-based learning has become a very popular solution in many Natural Language Processing (NLP) tasks by inserting a template into model input, which converts the task into a cloze-style one to smoothing out differences between the Pre-trained Language Model (PLM) and the current task. But in the case of relation classification, it is difficult to map the masked output to the relation labels because of its abundant semantic information, e.g. org:founded_by''. Therefore, a pre-trained model still needs enough labelled data to fit the relations. To mitigate this challenge, in this paper, we present a novel prompt-based learning method, namely LabelPrompt, for the relation classification task. It is an extraordinary intuitive approach by a motivation: ``GIVE MODEL CHOICES!''. First, we define some additional tokens to represent the relation labels, which regards these tokens as the verbalizer with semantic initialisation and constructs them with a prompt template method. Then we revisit the inconsistency of the predicted relation and the given entities, an entity-aware module with the thought of contrastive learning is designed to mitigate the problem. At last, we apply an attention query strategy to self-attention layers to resolve two types of tokens, prompt tokens and sequence tokens. The proposed strategy effectively improves the adaptation capability of prompt-based learning in the relation classification task when only a small labelled data is available. Extensive experimental results obtained on several bench-marking datasets demonstrate the superiority of the proposed LabelPrompt method, particularly in the few-shot scenario

    Joint Group Feature Selection and Discriminative Filter Learning for Robust Visual Object Tracking

    Get PDF
    We propose a new Group Feature Selection method for Discriminative Correlation Filters (GFS-DCF) based visual object tracking. The key innovation of the proposed method is to perform group feature selection across both channel and spatial dimensions, thus to pinpoint the structural relevance of multi-channel features to the filtering system. In contrast to the widely used spatial regularisation or feature selection methods, to the best of our knowledge, this is the first time that channel selection has been advocated for DCF-based tracking. We demonstrate that our GFS-DCF method is able to significantly improve the performance of a DCF tracker equipped with deep neural network features. In addition, our GFS-DCF enables joint feature selection and filter learning, achieving enhanced discrimination and interpretability of the learned filters. To further improve the performance, we adaptively integrate historical information by constraining filters to be smooth across temporal frames, using an efficient low-rank approximation. By design, specific temporal-spatial-channel configurations are dynamically learned in the tracking process, highlighting the relevant features, and alleviating the performance degrading impact of less discriminative representations and reducing information redundancy. The experimental results obtained on OTB2013, OTB2015, VOT2017, VOT2018 and TrackingNet demonstrate the merits of our GFS-DCF and its superiority over the state-of-the-art trackers. The code is publicly available at https://github.com/XU-TIANYANG/GFS-DCF

    An Accelerated Correlation Filter Tracker

    Full text link
    Recent visual object tracking methods have witnessed a continuous improvement in the state-of-the-art with the development of efficient discriminative correlation filters (DCF) and robust deep neural network features. Despite the outstanding performance achieved by the above combination, existing advanced trackers suffer from the burden of high computational complexity of the deep feature extraction and online model learning. We propose an accelerated ADMM optimisation method obtained by adding a momentum to the optimisation sequence iterates, and by relaxing the impact of the error between DCF parameters and their norm. The proposed optimisation method is applied to an innovative formulation of the DCF design, which seeks the most discriminative spatially regularised feature channels. A further speed up is achieved by an adaptive initialisation of the filter optimisation process. The significantly increased convergence of the DCF filter is demonstrated by establishing the optimisation process equivalence with a continuous dynamical system for which the convergence properties can readily be derived. The experimental results obtained on several well-known benchmarking datasets demonstrate the efficiency and robustness of the proposed ACFT method, with a tracking accuracy comparable to the start-of-the-art trackers
    • …
    corecore