32 research outputs found

    100 essential questions for the future of agriculture

    Get PDF
    Publication history: Accepted - 8 March 2023; Published online - 11 April 2023.The world is at a crossroad when it comes to agriculture. The global population is growing, and the demand for food is increasing, putting a strain on our agricultural resources and practices. To address this challenge, innovative, sustainable, and inclusive approaches to agriculture are urgently required. In this paper, we launched a call for Essential Questions for the Future of Agriculture and identified a priority list of 100 questions. We focus on 10 primary themes: transforming agri-food systems, enhancing resilience of agriculture to climate change, mitigating climate change through agriculture, exploring resources and technologies for breeding, advancing cultivation methods, sustaining healthy agroecosystems, enabling smart and controlled-environment agriculture for food security, promoting health and nutrition-driven agriculture, exploring economic opportunities and addressing social challenges, and integrating one health and modern agriculture. We emphasise the critical importance of interdisciplinary and multidisciplinary research that integrates both basic and applied sciences and bridges the gaps among various stakeholders for achieving sustainable agriculture. Key points Growing demand and resource limitations pose a critical challenge for agriculture, necessitating innovative and sustainable approaches. The paper identifies 100 priority questions for the future of agriculture, indicating current and future research directions. Sustainable agriculture depends on interdisciplinary and multidisciplinary research that harmonises basic and applied sciences and fosters collaboration among different stakeholders

    Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle

    Get PDF
    To elucidate genome-level responses to drought and high-salinity stress in rice, a 70mer oligomer microarray covering 36,926 unique genes or gene models was used to profile genome expression changes in rice shoot, flag leaf and panicle under drought or high-salinity conditions. While patterns of gene expression in response to drought or high-salinity stress within a particular organ type showed significant overlap, comparison of expression profiles among different organs showed largely organ-specific patterns of regulation. Moreover, both stresses appear to alter the expression patterns of a significant number of genes involved in transcription and cell signaling in a largely organ-specific manner. The promoter regions of genes induced by both stresses or induced by one stress in more than one organ types possess relative enrichment of two cis-elements (ABRE core and DRE core) known to be associated with water stress. An initial computational analysis indicated that novel promoter motifs are present in the promoters of genes involved in rehydration after drought. This analysis suggested that rice might possess a mechanism that actively detects rehydration and facilitates rapid recovery. Overall, our data supports a notion that organ-specific gene regulation in response to the two abiotic stresses may primarily be mediated by organ-specific transcription responses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11103-006-9111-1) contains supplementary material, which is available to authorized users

    Investigation on GaN-Based Membrane Photonic Crystal Surface Emitting Lasers

    No full text
    A GaN-based blue photonic crystal surface emitting laser (PCSEL) featured with membrane configuration was proposed and theoretically investigated. The membrane dimension, photonic crystal (PhC) material, lattice constant and thickness were studied by RCWA (Rigorous Coupled Wave Analysis), FDTD (Finite Difference Time Domain) simulations with the confinement factor and gain threshold as indicators. The membrane PCSEL’s confinement factor of active media is of 13~14% which is attributed to multi-pairs of quantum wells and efficient confinement of the mode in the membrane cavity with air claddings. The excellent confinement factor and larger Q factor of resonance mutually contribute to the lower gain threshold of the design (below 400 cm−1 for GaN-PhC with 100 nm thick top and bottom GaN layer, 40 nm hole radius and 40 nm depth). The PhC confinement factor exceeds 13% and 6% for TiO2-PhC with 80 nm and 60 nm PhC thickness and 20 nm and 40 nm distance between PhC and active media, respectively. It is around two times larger than that of GaN-PhC, which is attributed to the higher refractive index of TiO2 that pulls field distribution to the PhC layer

    Investigation on photonic crystal nanobeam cavity based on mixed diamond–circular holes

    No full text
    A photonic crystal nanobeam cavity (M-PCNC) with a structure incorporating a mixture of diamond-shaped and circular air holes is proposed. The performance of the cavity is simulated and studied theoretically. Using the finite-difference time-domain method, the parameters of the M-PCNC, including cavity thickness and width, lattice constant, and radii and numbers of holes, are optimized, with the quality factor Q and mode volume Vm as performance indicators. Mutual modulation of the lattice constant and hole radius enable the proposed M-PCNC to realize outstanding performance. The optimized cavity possesses a high quality factor Q = 1.45 × 105 and an ultra-small mode volume Vm = 0.01(λ/n) [Zeng et al., Opt Lett 2023:48;3981–3984] in the telecommunications wavelength range. Light can be progressively squeezed in both the propagation direction and the perpendicular in-plane direction by a series of interlocked anti-slots and slots in the diamond-shaped hole structure. Thereby, the energy can be confined within a small mode volume to achieve an ultra-high Q/Vm ratio

    Synergistic Enhancement Effect of Compound Additive of Organic Alcohols and Biosurfactant on Enzymatic Hydrolysis of Lignocellulose

    No full text
    The insufficient of lignocellulose degradation enzymes, such as cellulase and hemicellulase, is the major obstacle that hinders the bioconversion of lignocellulosic biomass to monosaccharides, especially during the woody biomass hydrolysis process. The addition of additives has received significant attention due to their enhancement of the enzymatic degradation efficiency of lignocellulose. In the present study, a combination of organic alcohols and a biosurfactant could synergistically enhance the saccharification of the cellulose substrate of Avicel, as well as that of pretreated poplar. Results showed that compound additives can greatly improve the conversion rate of enzymatic hydrolysis. The combination of 0.1% (v/v) n-decanol and 1% (v/v) sophorolipid dramatically increased the poplar enzymatic conversion rate from 17.9% to 85%, improving it by 67.1%. Enzyme-rich Hypocrea sp. W63 was fermented to obtain beta-glucosidase (BGL) and xylanase (XYL), which were used as auxiliary enzymes during enzymatic hydrolysis. It was found that the effects of such a combination of additives improved the filter paper activity, stability, and longevity, helping in the recovery of the cellulase cocktail. The compound additives associated with the commercial cellulase and Hypocrea sp. W63 enzyme solution formed an excellent formula for improving the stability of BGL and XYL. The results provide insight into compound additives and the use of a cellulase and auxiliary enzyme cocktail to improve enzymatic hydrolysis for lignocellulose conversion into biofuels

    Enhanced enzymatic hydrolysis of poplar cellulosic residue fractionated by a magnetic carbon-based solid-acid catalyst in the gamma-valerolactone-water system

    No full text
    The conventional pretreatment method of poplar comprises multiple steps, including different procedures for fractionating hemicellulose and lignin separately. In our study, hemicellulose and lignin were removed simultaneously by a one-step method. In the gamma-valerolactone (GVL)-water environment, the cellulose retention, hemicellulose removal, and lignin removal rates of 84.94%, 89.08%, and 72.28%, respectively, were achieved over a magnetic carbon-based solid acid (MMCSA) catalyst, under best conditions (160 degrees C, 30 min, 2 g of poplar, 2 g of MMCSA, 35 mL of GVL, and 15 mL of water). The pretreatment of fresh poplar in the reused MMCSA-GVL-water environment showed similar fractionation results as the first time. Scanning electron microscopy characterization of the cellulosic residue revealed the presence of noticeable structural fragmentation. Brunauer-Emmett-Teller characterization showed that the total pore volume of the residue was 2.13 times that of the raw material. The above features of the residue confirmed the high enzymatic hydrolysis potential of the pretreated residue. The enzymatic hydrolysis efficiency of the poplar residue was 67% at a cellulase loading of 20 FPU/g cellulose in dry matter, and it increased to 77.02% at 40 FPU/g cellulose in dry matter. Interestingly, the addition of Tween 80 did not improve the enzymatic hydrolysis efficiency at high cellulase loadings (30 and 40 FPU/g cellulose in dry matter) compared to the case at low cellulase loadings. The relative mechanisms were also analyzed. In this study, a one-step pretreatment method comprising the MMCSA-GVL system for the catalytic depolymerization of poplar wood was developed. The system was verified to be very effective for the subsequent enzymatic hydrolysis of the residues

    Features of the expressed sequences revealed by a large-scale analysis of ESTs from a normalized cDNA library of the elite indica rice cultivar Minghui 63

    No full text
    The indica subspecies of cultivated rice occupies the largest area of rice production in the world. However, a systematic analysis of cDNA sequences from the indica subspecies has not been performed. The aim of the present study was to collect and analyze the expressed sequence tags (ESTs) of indica rice on a large scale. A total of 39 208 raw sequences were generated from a normalized cDNA library prepared by use of 15 different tissues of the indica cultivar Minghui 63. After trimming, processing and analysis, 17 835 unique sequences were obtained, each of which presumably represents a unique gene. Of these sequences, 2663 were novel, and at least 70 were indica specific. Comparison of the Minghui 63 sequences with the ESTs/full-length cDNAs in GenBank revealed a large number of deletion/insertion/substitution (DIS) at both the inter- and intra-subspecific levels. The overall number of polymorphisms in the expressed sequences was higher in the inter-subspecific comparisons than in the intra-subspecific comparisons. However, the extent of DIS-based polymorphism was highly variable among different rice varieties. In total, 15 726 unique sequences, including 697 novel sequences, were assigned to regions where large numbers of quantitative trait loci (QTLs) for agronomic traits had been detected previously. These results may be useful for developing new molecular markers for genetic mapping, detecting allelic polymorphisms associated with phenotypic variations between rice varieties, and facilitating QTL cloning by providing the starting points for candidate-gene identification

    Is Imatinib Maintenance Required for Patients with Relapse Chronic Myeloid Leukemia Post-Transplantation Obtaining CMR? A Pilot Retrospective Investigation.

    Get PDF
    Imatinib can induce complete molecular remission (CMR) in relapse chronic myelogenous leukemia (CML) after allogeneic hematopoietic stem cell transplantation, but it is indefinite whether imatinib is required to maintain CMR. We retrospectively reviewed 37 relapse CML post-transplants treated with imatinib (n = 20) or donor lymphocyte infusion (DLI) (n = 17). The rate of CMR was 85% and 76.47% (P = 0.509) and treatment-related mortality was 0% and 29.4% (P = 0.019), respectively, in imatinib and DLI groups. Fifteen patients obtaining CMR voluntarily ceased imatinib, and did not experience relapse. The 8-year overall survival (OS) after relapse was 85%±8% and 40.3±12.1% (P = 0.017), and disease-free survival (DFS) after relapse was 85%±8% and 40.3±12.1% (P = 0.011), respectively, in imatinib and DLI groups. Imatinib resulted in higher OS and DFS than that of DLI in relapse CML. Imatinib maintenance might not be required for patients with relapse CML post-transplants after they achieved full donor chimerism and CMR
    corecore