96 research outputs found
Towards Accurate Guided Diffusion Sampling through Symplectic Adjoint Method
Training-free guided sampling in diffusion models leverages off-the-shelf
pre-trained networks, such as an aesthetic evaluation model, to guide the
generation process. Current training-free guided sampling algorithms obtain the
guidance energy function based on a one-step estimate of the clean image.
However, since the off-the-shelf pre-trained networks are trained on clean
images, the one-step estimation procedure of the clean image may be inaccurate,
especially in the early stages of the generation process in diffusion models.
This causes the guidance in the early time steps to be inaccurate. To overcome
this problem, we propose Symplectic Adjoint Guidance (SAG), which calculates
the gradient guidance in two inner stages. Firstly, SAG estimates the clean
image via function calls, where serves as a flexible hyperparameter
that can be tailored to meet specific image quality requirements. Secondly, SAG
uses the symplectic adjoint method to obtain the gradients accurately and
efficiently in terms of the memory requirements. Extensive experiments
demonstrate that SAG generates images with higher qualities compared to the
baselines in both guided image and video generation tasks
Fight Fire with Fire: Combating Adversarial Patch Attacks using Pattern-randomized Defensive Patches
Object detection has found extensive applications in various tasks, but it is
also susceptible to adversarial patch attacks. Existing defense methods often
necessitate modifications to the target model or result in unacceptable time
overhead. In this paper, we adopt a counterattack approach, following the
principle of "fight fire with fire," and propose a novel and general
methodology for defending adversarial attacks. We utilize an active defense
strategy by injecting two types of defensive patches, canary and woodpecker,
into the input to proactively probe or weaken potential adversarial patches
without altering the target model. Moreover, inspired by randomization
techniques employed in software security, we employ randomized canary and
woodpecker injection patterns to defend against defense-aware attacks. The
effectiveness and practicality of the proposed method are demonstrated through
comprehensive experiments. The results illustrate that canary and woodpecker
achieve high performance, even when confronted with unknown attack methods,
while incurring limited time overhead. Furthermore, our method also exhibits
sufficient robustness against defense-aware attacks, as evidenced by adaptive
attack experiments
Potential Applications of Remote Limb Ischemic Conditioning for Chronic Cerebral Circulation Insufficiency
Chronic cerebral circulation insufficiency (CCCI) refers to a chronic decrease in cerebral blood perfusion, which may lead to cognitive impairment, psychiatric disorders such as depression, and acute ischemic stroke. Remote limb ischemic conditioning (RLIC), in which the limbs are subjected to a series of transient ischemic attacks, can activate multiple endogenous protective mechanisms to attenuate fatal ischemic injury to distant organs due to acute ischemia, such as ischemic stroke. Recent studies have also reported that RLIC can alleviate dysfunction in distant organs caused by chronic, non-fatal reductions in blood supply (e.g., CCCI). Indeed, research has indicated that RLIC may exert neuroprotective effects against CCCI through a variety of potential mechanisms, including attenuated glutamate excitotoxicity, improved endothelial function, increased cerebral blood flow, regulation of autophagy and immune responses, suppression of apoptosis, the production of protective humoral factors, and attenuated accumulation of amyloid-β. Verification of these findings is necessary to improve prognosis and reduce the incidence of acute ischemic stroke/cognitive impairment in patients with CCCI
A review of stress-induced hyperglycaemia in the context of acute ischaemic stroke: Definition, underlying mechanisms, and the status of insulin therapy
The transient elevation of blood glucose produced following acute ischaemic stroke (AIS) has been described as stress-induced hyperglycaemia (SIH). SIH is common even in patients with AIS who have no previous diagnosis of diabetes mellitus. Elevated blood glucose levels during admission and hospitalization are strongly associated with enlarged infarct size and adverse prognosis in AIS patients. However, insulin-intensive glucose control therapy defined by admission blood glucose for SIH has not achieved the desired results, and new treatment ideas are urgently required. First, we explore the various definitions of SIH in the context of AIS and their predictive value in adverse outcomes. Then, we briefly discuss the mechanisms by which SIH arises, describing the dual effects of elevated glucose levels on the central nervous system. Finally, although preclinical studies support lowering blood glucose levels using insulin, the clinical outcomes of intensive glucose control are not promising. We discuss the reasons for this phenomenon
Recommended from our members
More Severe Manifestations and Poorer Short-Term Prognosis of Ganglioside-Associated Guillain-Barré Syndrome in Northeast China
Ganglioside as a neurotrophic drug has been hitherto widely used in China, although Guillain-Barré syndrome (GBS) following intravenous ganglioside treatment was reported in Europe several decades ago. We identified 7 patients who developed GBS after intravenous use of gangliosides (ganglioside+ group) and compared their clinical data with those of 77 non-ganglioside-associated GBS patients (ganglioside− group) in 2013, aiming at gaining the distinct features of ganglioside-associated GBS. Although the mean age, protein levels in cerebrospinal fluid (CSF) and frequency of cranial nerve involvement were similar between the two groups, the Hughes Functional Grading Scale (HFGS) score and the Medical Research Council (MRC) sum score at nadir significantly differed (4.9±0.4 vs 3.6±1.0; 7.7±5.5 vs 36.9±14.5, both p<0.001), indicating a higher disease severity of ganglioside-associated GBS. A higher ratio of patients with ganglioside-associated GBS required mechanical ventilation (85.7% vs 15.6%, p<0.01). The short-term prognosis of ganglioside-associated GBS, as measured by the HFGS score and the MRC sum score at discharge, was poorer (4.3±0.5 vs 2.8±1.1; 17.3±12.9 vs 46.0±13.9, both p<0.001). All the patients in the ganglioside+ group presented an axonal form of GBS, namely acute motor axonal neuropathy (AMAN). When compared with the AMAN patients in the ganglioside− group, more severe functional deficits at nadir and poorer recovery after standard treatment were still prominent in ganglioside-associated GBS. Anti-GM1 and anti-GT1a antibodies were detectable in patients with AMAN while not in patients with the demyelinating subtype of GBS. The concentrations of these antibodies in patients with AMAN were insignificantly different between the ganglioside+ and ganglioside− groups. In sum, ganglioside-associated GBS may be a devastating side effect of intravenous use of gangliosides, which usually manifests a more severe clinical course and poorer outcome
Recommended from our members
Exposure to Polycyclic Aromatic Hydrocarbons, Plasma Cytokines, and Heart Rate Variability
Epidemiological studies have suggested associations between polycyclic aromatic hydrocarbons (PAHs) and heart rate variability (HRV). However, the roles of plasma cytokines in these associations are limited. In discovery stage of this study, we used Human Cytokine Antibody Arrays to examine differences in the concentrations of 280 plasma cytokines between 8 coke-oven workers and 16 community residents. We identified 19 cytokines with significant different expression (fold change ≥2 or ≤−2, and q-value 16% BDNF decreases. Additionally, OH-PAHs were positively associated with activated leukocyte cell adhesion molecule (ALCAM) and C-reactive protein (CRP) (p 20% increases in CRP. We also found significant associations between these cytokines and HRV (p 8% decreases in HRV. Our results indicated PAH exposure was associated with plasma cytokines, and higher cytokines were associated with decreased HRV, but additional human and potential mechanistic studies are needed
Contributions of the Hippocampal CA3 Circuitry to Acute Seizures and Hyperexcitability Responses in Mouse Models of Brain Ischemia
The hippocampal circuitry is widely recognized as susceptible to ischemic injury and seizure generation. However, hippocampal contribution to acute non-convulsive seizures (NCS) in models involving middle cerebral artery occlusion (MCAO) remains to be determined. To address this, we occluded the middle cerebral artery in adult C57 black mice and monitored electroencephalographic (EEG) discharges from hippocampal and neocortical areas. Electrographic discharges in the absence of convulsive motor behaviors were observed within 90 min following occlusion of the middle cerebral artery. Hippocampal discharges were more robust than corresponding cortical discharges in all seizure events examined, and hippocampal discharges alone or with minimal cortical involvement were also observed in some seizure events. Seizure development was associated with ipsilateral hippocampal injuries as determined by subsequent histological examinations. We also introduced hypoxia-hypoglycemia episodes in mouse brain slices and examined regional hyperexcitable responses ex vivo. Extracellular recordings showed that the hippocampal CA3 region had a greater propensity for exhibiting single/multiunit activities or epileptiform field potentials following hypoxic-hypoglycemic (HH) episodes compared to the CA1, dentate gyrus, entorhinal cortical (EC) or neocortical regions. Whole-cell recordings revealed that CA3 pyramidal neurons exhibited excessive excitatory postsynaptic currents, attenuated inhibitory postsynaptic currents and intermittent or repetitive spikes in response to HH challenge. Together, these observations suggest that hippocampal discharges, possibly as a result of CA3 circuitry hyperexcitability, are a major component of acute NCS in a mouse model of MCAO
Effects of exoskeleton-assisted walking on bowel function in motor-complete spinal cord injury patients: involvement of the brain–gut axis, a pilot study
Evidence has demonstrated that exoskeleton robots can improve intestinal function in patients with spinal cord injury (SCI). However, the underlying mechanisms remain unelucidated. This study investigated the effects of exoskeleton-assisted walking (EAW) on intestinal function and intestinal flora structure in T2-L1 motor complete paraplegia patients. The results showed that five participants in the EAW group and three in the conventional group reported improvements in at least one bowel management index, including an increased frequency of bowel evacuations, less time spent on bowel management per day, and less external assistance (manual digital stimulation, medication, and enema usage). After 8 weeks of training, the amount of glycerol used in the EAW group decreased significantly (p <0.05). The EAW group showed an increasing trend in the neurogenic bowel dysfunction (NBD) score after 8 weeks of training, while the conventional group showed a worsening trend. Patients who received the EAW intervention exhibited a decreased abundance of Bacteroidetes and Verrucomicrobia, while Firmicutes, Proteobacteria, and Actinobacteria were upregulated. In addition, there were decreases in the abundances of Bacteroides, Prevotella, Parabacteroides, Akkermansia, Blautia, Ruminococcus 2, and Megamonas. In contrast, Ruminococcus 1, Ruminococcaceae UCG002, Faecalibacterium, Dialister, Ralstonia, Escherichia-Shigella, and Bifidobacterium showed upregulation among the top 15 genera. The abundance of Ralstonia was significantly higher in the EAW group than in the conventional group, and Dialister increased significantly in EAW individuals at 8 weeks. This study suggests that EAW can improve intestinal function of SCI patients in a limited way, and may be associated with changes in the abundance of intestinal flora, especially an increase in beneficial bacteria. In the future, we need to further understand the changes in microbial groups caused by EAW training and all related impact mechanisms, especially intestinal flora metabolites.Clinical trial registration: https://www.chictr.org.cn/
- …