16 research outputs found
Modeling tools for integrated and fiber optical devices
This presentation will emphasize the current status of advanced design and simulation tools in photonics technology. The focus will be on Wavelength Division Multiplexing (WDM) component and integrated optic circuits modeling, although some aspects of optical link simulations will also be discussed. A wide variety of numerical methods such as the Beam Propagation Method (BPM), the Coupled Mode Theory (CMT), the Transfer Matrix Method (TMM), and the Finite-Difference Time Domain Method (FDTDM) in their state-of-the-art implementation will be presented. The results from simulating selected photonic components will be discussed
Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media
This paper discusses a numerical method for computing the electromagnetic modes supported by multilayer planar optical waveguides constructed from lossy or active media, having in general a diagonal permittivity tensor. The method solves the dispersion equations in the complex plane via the Cauchy integration method. It is applicable to lossless, lossy and active waveguides, and to AntiResonant Reflecting Optical Waveguides (ARROW's). Analytical derivatives for the dispersion equations are derived and presented for what is believed to be the first time, and a new algorithm that significantly reduces the time required to compute the derivatives is given. This has a double impact: improved accuracy and reduced computation time compared to the standard approach. A different integration contour, which is suitable for leaky modes is also presented. Comparisons are made with results found in the literature; excellent agreement is noted for all comparisons made
Strong Electro-Absorption in GeSi Epitaxy on Silicon-on-Insulator (SOI)
We have investigated the selective epitaxial growth of GeSi bulk material on silicon-on-insulator substrates by reduced pressure chemical vapor deposition. We employed AFM, SIMS, and Hall measurements, to characterize the GeSi heteroepitaxy quality. Optimal growth conditions have been identified to achieve low defect density, low RMS roughness with high selectivity and precise control of silicon content. Fabricated vertical p-i-n diodes exhibit very low dark current density of 5 mA/cm2 at −1 V bias. Under a 7.5 V/µm E-field, GeSi alloys with 0.6% Si content demonstrate very strong electro-absorption with an estimated effective ∆α/α around 3.5 at 1,590 nm. We compared measured ∆α/α performance to that of bulk Ge. Optical modulation up to 40 GHz is observed in waveguide devices while small signal analysis indicates bandwidth is limited by device parasitics
Strong Electro-Absorption in GeSi Epitaxy on Silicon-on-Insulator (SOI)
We have investigated the selective epitaxial growth of GeSi bulk material on silicon-on-insulator substrates by reduced pressure chemical vapor deposition. We employed AFM, SIMS, and Hall measurements, to characterize the GeSi heteroepitaxy quality. Optimal growth conditions have been identified to achieve low defect density, low RMS roughness with high selectivity and precise control of silicon content. Fabricated vertical <em>p</em>-<em>i</em>-<em>n</em> diodes exhibit very low dark current density of 5 mA/cm<sup>2</sup> at −1 V bias. Under a 7.5 V/µm E-field, GeSi alloys with 0.6% Si content demonstrate very strong electro-absorption with an estimated effective ∆α/α around 3.5 at 1,590 nm. We compared measured ∆α/α performance to that of bulk Ge. Optical modulation up to 40 GHz is observed in waveguide devices while small signal analysis indicates bandwidth is limited by device parasitics
Advances in the development of simulation tools for integrated optics devices: FDTD, BPM and mode solving techniques
In the present paper we review the state of the art of two complementary propagation techniques with applications for integrated optics device modeling: The Finite-Difference Time-Domain and the Beam Propagation Method. In both cases we focus on their main features such as the types of propagation schemes and the material effects that can be modeled. In addition, we also consider a 2D mode solver based on a complex root finding procedure-a representative mode solving technique that is of significant interest for design and modeling of leaky mode based devices. Each of the methods is illustrated with appropriate simulation examples of devices and waveguide structures being of current research interest: photonic band gap structures, waveguide gratings, ARROW waveguides etc. The selected examples show the power of the methods as well as the consistency and the complementarity of their results when applied together