7 research outputs found

    R-PMAC: A Robust Preamble Based MAC Mechanism Applied in Industrial Internet of Things

    Full text link
    This paper proposes a novel media access control (MAC) mechanism, called the robust preamble-based MAC mechanism (R-PMAC), which can be applied to power line communication (PLC) networks in the context of the Industrial Internet of Things (IIoT). Compared with other MAC mechanisms such as P-MAC and the MAC layer of IEEE1901.1, R-PMAC has higher networking speed. Besides, it supports whitelist authentication and functions properly in the presence of data frame loss. Firstly, we outline three basic mechanisms of R-PMAC, containing precise time difference calculation, preambles generation and short ID allocation. Secondly, we elaborate its networking process of single layer and multiple layers. Thirdly, we illustrate its robust mechanisms, including collision handling and data retransmission. Moreover, a low-cost hardware platform is established to measure the time of connecting hundreds of PLC nodes for the R-PMAC, P-MAC, and IEEE1901.1 mechanisms in a real power line environment. The experiment results show that R-PMAC outperforms the other mechanisms by achieving a 50% reduction in networking time. These findings indicate that the R-PMAC mechanism holds great potential for quickly and effectively building a PLC network in actual industrial scenarios.Comment: This paper has been accepted by IEEE Internet of Things Journa

    Linear MIMO Precoders Design for Finite Alphabet Inputs via Model-Free Training

    Full text link
    This paper investigates a novel method for designing linear precoders with finite alphabet inputs based on autoencoders (AE) without the knowledge of the channel model. By model-free training of the autoencoder in a multiple-input multiple-output (MIMO) system, the proposed method can effectively solve the optimization problem to design the precoders that maximize the mutual information between the channel inputs and outputs, when only the input-output information of the channel can be observed. Specifically, the proposed method regards the receiver and the precoder as two independent parameterized functions in the AE and alternately trains them using the exact and approximated gradient, respectively. Compared with previous precoders design methods, it alleviates the limitation of requiring the explicit channel model to be known. Simulation results show that the proposed method works as well as those methods under known channel models in terms of maximizing the mutual information and reducing the bit error rate.Comment: Accepted by GLOBECOM 202

    Joint Beamforming and Antenna Movement Design for Moveable Antenna Systems Based on Statistical CSI

    Full text link
    This paper studies a novel movable antenna (MA)-enhanced multiple-input multiple-output (MIMO) system to leverage the corresponding spatial degrees of freedom (DoFs) for improving the performance of wireless communications. We aim to maximize the achievable rate by jointly optimizing the MA positions and the transmit covariance matrix based on statistical channel state information (CSI). To solve the resulting design problem, we develop a constrained stochastic successive convex approximation (CSSCA) algorithm applicable for the general movement mode. Furthermore, we propose two simplified antenna movement modes, namely the linear movement mode and the planar movement mode, to facilitate efficient antenna movement and reduce the computational complexity of the CSSCA algorithm. Numerical results show that the considered MA-enhanced system can significantly improve the achievable rate compared to conventional MIMO systems employing uniform planar arrays (UPAs) and that the proposed planar movement mode performs closely to the performance upper bound achieved by the general movement mode
    corecore