5 research outputs found

    Topological Entanglement Entropy from the Holographic Partition Function

    Full text link
    We study the entropy of chiral 2+1-dimensional topological phases, where there are both gapped bulk excitations and gapless edge modes. We show how the entanglement entropy of both types of excitations can be encoded in a single partition function. This partition function is holographic because it can be expressed entirely in terms of the conformal field theory describing the edge modes. We give a general expression for the holographic partition function, and discuss several examples in depth, including abelian and non-abelian fractional quantum Hall states, and p+ip superconductors. We extend these results to include a point contact allowing tunneling between two points on the edge, which causes thermodynamic entropy associated with the point contact to be lost with decreasing temperature. Such a perturbation effectively breaks the system in two, and we can identify the thermodynamic entropy loss with the loss of the edge entanglement entropy. From these results, we obtain a simple interpretation of the non-integer `ground state degeneracy' which is obtained in 1+1-dimensional quantum impurity problems: its logarithm is a 2+1-dimensional topological entanglement entropy.Comment: 16 pages, 2 figure

    Analytic results on the geometric entropy for free fields

    Full text link
    The trace of integer powers of the local density matrix corresponding to the vacuum state reduced to a region V can be formally expressed in terms of a functional integral on a manifold with conical singularities. Recently, some progress has been made in explicitly evaluating this type of integrals for free fields. However, finding the associated geometric entropy remained in general a difficult task involving an analytic continuation in the conical angle. In this paper, we obtain this analytic continuation explicitly exploiting a relation between the functional integral formulas and the Chung-Peschel expressions for the density matrix in terms of correlators. The result is that the entropy is given in terms of a functional integral in flat Euclidean space with a cut on V where a specific boundary condition is imposed. As an example we get the exact entanglement entropies for massive scalar and Dirac free fields in 1+1 dimensions in terms of the solutions of a non linear differential equation of the Painleve V type.Comment: 7 pages, minor change

    Non-zero temperature transport near quantum critical points

    Full text link
    We describe the nature of charge transport at non-zero temperatures (TT) above the two-dimensional (dd) superfluid-insulator quantum critical point. We argue that the transport is characterized by inelastic collisions among thermally excited carriers at a rate of order kBT/k_B T/\hbar. This implies that the transport at frequencies ωkBT/\omega \ll k_B T/\hbar is in the hydrodynamic, collision-dominated (or `incoherent') regime, while ωkBT/\omega \gg k_B T/\hbar is the collisionless (or `phase-coherent') regime. The conductivity is argued to be e2/he^2 / h times a non-trivial universal scaling function of ω/kBT\hbar \omega / k_B T, and not independent of ω/kBT\hbar \omega/k_B T, as has been previously claimed, or implicitly assumed. The experimentally measured d.c. conductivity is the hydrodynamic ω/kBT0\hbar \omega/k_B T \to 0 limit of this function, and is a universal number times e2/he^2 / h, even though the transport is incoherent. Previous work determined the conductivity by incorrectly assuming it was also equal to the collisionless ω/kBT\hbar \omega/k_B T \to \infty limit of the scaling function, which actually describes phase-coherent transport with a conductivity given by a different universal number times e2/he^2 / h. We provide the first computation of the universal d.c. conductivity in a disorder-free boson model, along with explicit crossover functions, using a quantum Boltzmann equation and an expansion in ϵ=3d\epsilon=3-d. The case of spin transport near quantum critical points in antiferromagnets is also discussed. Similar ideas should apply to the transitions in quantum Hall systems and to metal-insulator transitions. We suggest experimental tests of our picture and speculate on a new route to self-duality at two-dimensional quantum critical points.Comment: Feedback incorporated into numerous clarifying remarks; additional appendix discusses relationship to transport in dissipative quantum mechanics and quantum Hall edge state tunnelling problems, stimulated by discussions with E. Fradki

    Quantum Impurity Entanglement

    Full text link
    Entanglement in J_1-J_2, S=1/2 quantum spin chains with an impurity is studied using analytic methods as well as large scale numerical density matrix renormalization group methods. The entanglement is investigated in terms of the von Neumann entropy, S=-Tr rho_A log rho_A, for a sub-system A of size r of the chain. The impurity contribution to the uniform part of the entanglement entropy, S_{imp}, is defined and analyzed in detail in both the gapless, J_2 <= J_2^c, as well as the dimerized phase, J_2>J_2^c, of the model. This quantum impurity model is in the universality class of the single channel Kondo model and it is shown that in a quite universal way the presence of the impurity in the gapless phase, J_2 <= J_2^c, gives rise to a large length scale, xi_K, associated with the screening of the impurity, the size of the Kondo screening cloud. The universality of Kondo physics then implies scaling of the form S_{imp}(r/xi_K,r/R) for a system of size R. Numerical results are presented clearly demonstrating this scaling. At the critical point, J_2^c, an analytic Fermi liquid picture is developed and analytic results are obtained both at T=0 and T>0. In the dimerized phase an appealing picure of the entanglement is developed in terms of a thin soliton (TS) ansatz and the notions of impurity valence bonds (IVB) and single particle entanglement (SPE) are introduced. The TS-ansatz permits a variational calculation of the complete entanglement in the dimerized phase that appears to be exact in the thermodynamic limit at the Majumdar-Ghosh point, J_2=J_1/2, and surprisingly precise even close to the critical point J_2^c. In appendices the relation between the finite temperature entanglement entropy, S(T), and the thermal entropy, S_{th}(T), is discussed and and calculated at the MG-point using the TS-ansatz.Comment: 62 pages, 27 figures, JSTAT macro
    corecore