372 research outputs found
Research on a Model of Extracting Persons\u27 Information Based on Statistic Method and Conceptual Knowledge
PACLIC 21 / Seoul National University, Seoul, Korea / November 1-3, 200
Determining layer number of two dimensional flakes of transition-metal dichalcogenides by the Raman intensity from substrate
Transition-metal dichalcogenide (TMD) semiconductors have been widely studied
due to their distinctive electronic and optical properties. The property of TMD
flakes is a function of its thickness, or layer number (N). How to determine N
of ultrathin TMDs materials is of primary importance for fundamental study and
practical applications. Raman mode intensity from substrates has been used to
identify N of intrinsic and defective multilayer graphenes up to N=100.
However, such analysis is not applicable for ultrathin TMD flakes due to the
lack of a unified complex refractive index () from monolayer to bulk
TMDs. Here, we discuss the N identification of TMD flakes on the SiO/Si
substrate by the intensity ratio between the Si peak from 100-nm (or 89-nm)
SiO/Si substrates underneath TMD flakes and that from bare SiO/Si
substrates. We assume the real part of of TMD flakes as that of
monolayer TMD and treat the imaginary part of as a fitting
parameter to fit the experimental intensity ratio. An empirical ,
namely, , of ultrathin MoS, WS and WSe
flakes from monolayer to multilayer is obtained for typical laser excitations
(2.54 eV, 2.34 eV, or 2.09 eV). The fitted of MoS has
been used to identify N of MoS flakes deposited on 302-nm SiO/Si
substrate, which agrees well with that determined from their shear and
layer-breathing modes. This technique by measuring Raman intensity from the
substrate can be extended to identify N of ultrathin 2D flakes with N-dependent
. For the application purpose, the intensity ratio excited by
specific laser excitations has been provided for MoS, WS and
WSe flakes and multilayer graphene flakes deposited on Si substrates
covered by 80-110 nm or 280-310 nm SiO layer.Comment: 10 pages, 4 figures. Accepted by Nanotechnolog
Freshness-aware Resource Allocation for Non-orthogonal Wireless-powered IoT Networks
This paper investigates a wireless-powered Internet of Things (IoT) network
comprising a hybrid access point (HAP) and two devices. The HAP facilitates
downlink wireless energy transfer (WET) for device charging and uplink wireless
information transfer (WIT) to collect status updates from the devices. To keep
the information fresh, concurrent WET and WIT are allowed, and orthogonal
multiple access (OMA) and non-orthogonal multiple access (NOMA) are adaptively
scheduled for WIT. Consequently, we formulate an expected weighted sum age of
information (EWSAoI) minimization problem to adaptively schedule the
transmission scheme, choosing from WET, OMA, NOMA, and WET+OMA, and to allocate
transmit power. To address this, we reformulate the problem as a Markov
decision process (MDP) and develop an optimal policy based on instantaneous AoI
and remaining battery power to determine scheme selection and transmit power
allocation. Extensive results demonstrate the effectiveness of the proposed
policy, and the optimal policy has a distinct decision boundary-switching
property, providing valuable insights for practical system design
Karst collapse risk zonation and evaluation in Wuhan, China based on analytic hierarchy process, logistic regression, and insar angular distortion approaches
The current study presents a detailed assessment of risk zones related to karst collapse in Wuhan by analytical hierarchy process (AHP) and logistic regression (LR) models. The results showed that the LR model was more accurate with an area under the receiver operating characteristic (ROC) curve of 0.911 compared to 0.812 derived from the AHP model. Both models performed well in identifying high-risk zones with only a 3% discrepancy in area. However, for the medium-and low-risk classes, although the spatial distribution of risk zoning results were similar between two approaches, the spatial extent of the risk areas varied between final models. The reliability of both methods were reduced significantly by excluding the InSAR-based ground subsidence map from the analysis, with the karst collapse presence falling into the high-risk zone being reduced by approximately 14%, and karst collapse absence falling into the karst area being increased by approximately 6.5% on the training samples. To evaluate the practicality of using only results from ground subsidence maps for the risk zonation, the results of AHP and LR are compared with a weighted angular distortion (WAD) method for karst risk zoning in Wuhan. We find that the areas with relatively large subsidence horizontal gradient values within the karst belts are generally spatially consistent with high-risk class areas identified by the AHP-and LR-based approaches. However, the WAD-based approach cannot be used alone as an ideal karst collapse risk assessment model as it does not include geological and natural factors into the risk zonation. © 2021 by the authors. Licensee MDPI, Basel, Switzerland
Arbitrarily primed sequence-related amplified polymorphism (AP-SRAP)
Sequence-related amplified polymorphism (SRAP) is a new-type molecular technique that targets coding sequences in the genome and results in a moderate number of co-dominant markers. Based on the SRAP program, the random primer combinations of SRAP, amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) were used as new primers in marker analysis. We defined this technique as arbitrarily primed sequence-related amplified polymorphism (AP-SRAP). Of 256 tested AP-SRAP primers, 37.6% primers produced polymorphic patterns from the DNA of one or more species, which showed that AP-SRAP is an effective method to screen markers. Additionally, 80 SRAP primers were used to screen markers in seven plant species (Chinese cabbage, Chinese kale, eggplant, pepper, cucumber, rose and lily), which indicated obvious polymorphism. The primers of AP-SRAP combine simply and reliably. It can overcome the limitation of the number of standard SRAP primers, make greater use of the supply of alternative primers, and potentially reduce laboratory costs. We expect that AP-SRAP may be of wide application in identity testing, population studies, linkage analysis and genome mapping.Keywords: Arbitrarily primed amplification, DNA markers, plantsAfrican Journal of Biotechnology Vol. 12(29), pp. 4588-459
Identification and pharmacokinetics of saponins in Rhizoma Anemarrhenae after oral administration to rats by HPLC-Q-TOF/MS and HPLC-MS/MS
Rhizoma Anemarrhenae is a well-known herbal medicine with saponins as its commonly regarded major bioactive components. It is essential to classify the properties of saponins which are associated with their toxicity and efficacy. In this study, 25 compounds were identified by HPLC-Q-TOF/MS in the extract of Rhizoma Anemarrhenae and 8 saponins were detected in rat plasma by HPLC-MS/MS after oral administration of this extract. These were neomangiferin, mangiferin, timosaponin E1, timosaponin E, timosaponin B-II, timosaponin B-III, timosaponin A-III and timosaponin A-I. A sensitive and accurate HPLC-MS/MS method was developed and successfully applied to a pharmacokinetic study of the abovementioned eight saponins after oral administration of the Rhizoma Anemarrhenae extract to rats. The method validation, including specificity, linearity, precision, accuracy, recovery, matrix effect and robustness, met the requirements of the intended use. The pharmacokinetic parameter, Tmax value, ranged from 2 to 8 h for these eight saponins whereas their elimination half-life (t1/2) ranged from 4.06 to 9.77 h, indicating slow excretion. The plasma concentrations of these eight saponins were all very low, indicating a relatively low oral bioavailability. All these results provide support for further clinical studies
Research Progress on Natural Diterpenoids in Reversing Multidrug Resistance
Multidrug resistance (MDR) is one of the main impediments in successful chemotherapy in cancer treatment. Overexpression of ATP-binding cassette (ABC) transporter proteins is one of the most important mechanisms of MDR. Natural products have their unique advantages in reversing MDR, among which diterpenoids have attracted great attention of the researchers around the world. This review article summarizes and discusses the research progress on diterpenoids in reversing MDR
Associations of long-term exposure to air pollution, physical activity with blood pressure and prevalence of hypertension: the China Health and Retirement Longitudinal Study
BackgroundLong-term exposure to air pollution and physical activity (PA) are linked to blood pressure and hypertension. However, the joint effect of air pollution and PA on blood pressure and hypertension are still unknown in Chinese middle-aged and older adults.MethodsA total of 14,622 middle-aged and older adults from the China Health and Retirement Longitudinal Study wave 3 were included in this study. Ambient air pollution [particulate matter with diameter ≤ 2.5 μm (PM2.5), or ≤10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbonic oxide (CO)] were estimated using satellite-based spatiotemporal models. PA was investigated using International Physical Activity Questionnaire. Generalized linear models were used to examine the associations of air pollution, PA score with blood pressure [systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP)], and the prevalence of hypertension. Subgroup analysis was conducted to investigate the effects of air pollution on blood pressure and the prevalence of hypertension in different PA groups.ResultsThe results showed that for each inter-quartile range (IQR) increase in PM2.5 (25.45 μg/m3), PM10 (40.56 μg/m3), SO2 (18.61 μg/m3), NO2 (11.16 μg/m3), CO (0.42 mg/m3) and PA score (161.3 MET/h-week), the adjusted odd ratio (OR) of hypertension was 1.207 (95% confidence interval (CI): 1.137, 1.281), 1.189 (95%CI: 1.122, 1.260), 1.186 (95%CI: 1.112, 1.266), 1.186 (95%CI: 1.116, 1.260), 1.288 (95%CI: 1.223, 1.357), 0.948 (95%CI: 0.899, 0.999), respectively. Long-term exposure to PM2.5, PM10, SO2, NO2, and CO was associated with increased SBP, DBP, and MAP levels. For example, each IQR increase in PM2.5 was associated with 1.20 mmHg (95%CI: 0.69, 1.72) change in SBP, 0.66 mmHg (95%CI: 0.36, 0.97) change in DBP, and 0.84 mmHg (95%CI: 0.49, 1.19) change in MAP levels, respectively. Each IQR increase in PA score was associated with −0.56 mmHg (95%CI: −1.03, −0.09) change in SBP, −0.32 mmHg (95%CI: −0.59, −0.05) change in DBP, and −0.33 mmHg (95%CI: −0.64, −0.02) change in MAP levels, respectively. Subgroup analysis found that the estimated effects in the sufficient PA group were lower than that in the insufficient PA group.ConclusionLong-term exposure to air pollutants is associated with increased blood pressure and hypertension risk, while high-level PA is associated with decreased blood pressure and hypertension risk. Strengthening PA might attenuate the adverse effects of air pollution on blood pressure and hypertension risk
Disopropyl {[(2S,3S)-2-amino-3-methylpentanamido](phenyl)methyl}phosphinate
There are two independent molecules in the asymmetric unit of the title compound, C19H33N2O4P. In the crystal, the two independent molecules are linked via N—H⋯O=P hydrogen bonds, forming dimers
- …