26 research outputs found

    Organic acidurias: Major gaps, new challenges, and a yet unfulfilled promise

    Get PDF
    Organic acidurias (OADs) comprise a biochemically defined group of inherited metabolic diseases. Increasing awareness, reliable diagnostic work-up, newborn screening programs for some OADs, optimized neonatal and intensive care, and the development of evidence-based recommendations have improved neonatal survival and short-term outcome of affected individuals. However, chronic progression of organ dysfunction in an aging patient population cannot be reliably prevented with traditional therapeutic measures. Evidence is increasing that disease progression might be best explained by mitochondrial dysfunction. Previous studies have demonstrated that some toxic metabolites target mitochondrial proteins inducing synergistic bioenergetic impairment. Although these potentially reversible mechanisms help to understand the development of acute metabolic decompensations during catabolic state, they currently cannot completely explain disease progression with age. Recent studies identified unbalanced autophagy as a novel mechanism in the renal pathology of methylmalonic aciduria, resulting in impaired quality control of organelles, mitochondrial aging and, subsequently, progressive organ dysfunction. In addition, the discovery of post-translational short-chain lysine acylation of histones and mitochondrial enzymes helps to understand how intracellular key metabolites modulate gene expression and enzyme function. While acylation is considered an important mechanism for metabolic adaptation, the chronic accumulation of potential substrates of short-chain lysine acylation in inherited metabolic diseases might exert the opposite effect, in the long run. Recently, changed glutarylation patterns of mitochondrial proteins have been demonstrated in glutaric aciduria type 1. These new insights might bridge the gap between natural history and pathophysiology in OADs, and their exploitation for the development of targeted therapies seems promising

    Fibroblast growth factor 21 as a biomarker for long-term complications in organic acidemias

    Get PDF
    Background: There is increasing evidence that long-term complications in organic acidemias are caused by impaired mitochondrial metabolism. Currently, there is no specific biomarker to monitor mitochondrial dysfunction in organic acidemias. Serum fibroblast growth factor 21 (FGF-21) is a biomarker for mitochondrial disease and could be a candidate to monitor mitochondrial function in the deleterious course of disease. Methods: Data of 17 patients with classical organic acidemias (11 propionic acidemia (PA), four methylmalonic acidemia (MMA) and two isovaleric acidemia (IVA) patients) were included. The clinical course was evaluated; metabolic decompensations and long-term complications were correlated with plasma FGF-21 levels. Cardiomyopathy, prolonged QT interval, renal failure, and optic neuropathy were defined as long-term complications. Results: Patients ages ranged from 16 months up to 32 years. Serious long-term complications occurred in eight patients (five PA and three MMA patients). In MMA and PA patients plasma FGF-21 levels during stable metabolic periods were significantly higher in patients with long-term complications (Mdn = 2556.0 pg/ml) compared to patients without (Mdn = 287.0 pg/ml). A median plasma FGF-21 level above 1500 pg/ml during a stable metabolic period, measured before the occurrence of long-term complications, had a positive predictive value of 0.83 and a negative predictive value of 1.00 on long-term complications in MMA and PA patients. Conclusion: This study demonstrates the potential role of FGF-21 as a biomarker for long-term complications in classical organic acidemias, attributed to mitochondrial dysfunction

    Retrospective evaluation of the Dutch pre-newborn screening cohort for propionic acidemia and isolated methylmalonic acidemia:What to aim, expect, and evaluate from newborn screening?

    Get PDF
    Evidence for effectiveness of newborn screening (NBS) for propionic acidemia (PA) and isolated methylmalonic acidemia (MMA) is scarce. Prior to implementation in the Netherlands, we aim to estimate the expected health gain of NBS for PA and MMA. In this national retrospective cohort study, the clinical course of 76/83 Dutch PA and MMA patients, diagnosed between January 1979 and July 2019, was evaluated. Five clinical outcome parameters were defined: adverse outcome of the first symptomatic phase, frequency of acute metabolic decompensations (AMD), cognitive function, mitochondrial complications, and treatment-related complications. Outcomes of patients identified by family testing were compared with the outcomes of their index siblings. An adverse outcome due to the first symptomatic phase was recorded in 46% of the clinically diagnosed patients. Outcome of the first symptomatic phase was similar in 5/9 sibling pairs and better in 4/9 pairs. Based on the day of diagnosis of the clinically diagnosed patients and sibling pair analysis, a preliminary estimated reduction of adverse outcome due to the first symptomatic phase from 46% to 36%-38% was calculated. Among the sibling pairs, AMD frequency, cognitive function, mitochondrial, and treatment-related complications were comparable. These results suggest that the health gain of NBS for PA and MMA in overall outcome may be limited, as only a modest decrease of adverse outcomes due to the first symptomatic phase is expected. With current clinical practice, no reduced AMD frequency, improved cognitive function, or reduced frequency of mitochondrial or treatment-related complications can be expected

    Retrospective evaluation of the Dutch pre-newborn screening cohort for propionic acidemia and isolated methylmalonic acidemia: What to aim, expect, and evaluate from newborn screening?

    Get PDF
    Evidence for effectiveness of newborn screening (NBS) for propionic acidemia (PA) and isolated methylmalonic acidemia (MMA) is scarce. Prior to implementation in the Netherlands, we aim to estimate the expected health gain of NBS for PA and MMA. In this national retrospective cohort study, the clinical course of 76/83 Dutch PA and MMA patients, diagnosed between January 1979 and July 2019, was evaluated. Five clinical outcome parameters were defined: adverse outcome of the first symptomatic phase, frequency of acute metabolic decompensations (AMD), cognitive function, mitochondrial complications, and treatment-related complications. Outcomes of patients identified by family testing were compared with the outcomes of their index siblings. An adverse outcome due to the first symptomatic phase was recorded in 46% of the clinically diagnosed patients. Outcome of the first symptomatic phase was similar in 5/9 sibling pairs and better in 4/9 pairs. Based on the day of diagnosis of the clinically diagnosed patients and sibling pair analysis, a preliminary estimated reduction of adverse outcome due to the first symptomatic phase from 46% to 36%-38% was calculated. Among the sibling pairs, AMD frequency, cognitive function, mitochondrial, and treatment-related complications were comparable. These results suggest that the health gain of NBS for PA and MMA in overall outcome may be limited, as only a modest decrease of adverse outcomes due to the first symptomatic phase is expected. With current clinical practice, no reduced AMD frequency, improved cognitive function, or reduced frequency of mitochondrial or treatment-related complications can be expected

    Evaluation of dietary treatment and amino acid supplementation in organic acidurias and urea‐cycle disorders: On the basis of information from a European multicenter registry

    Get PDF
    Organic acidurias (OAD) and urea-cycle disorders (UCD) are rare inherited disorders affecting amino acid and protein metabolism. As dietary practice varies widely, we assessed their long-term prescribed dietary treatment against published guideline and studied plasma amino acids levels. We analyzed data from the first visit recorded in the European registry and network for intoxication type metabolic diseases (E-IMD, Chafea no. 2010 12 01). In total, 271 methylmalonic aciduria (MMA) and propionic aciduria (PA) and 361 UCD patients were included. Median natural protein prescription was consistent with the recommended daily allowance (RDA), plasma L-valine (57%), and L-isoleucine (55%) levels in MMA and PA lay below reference ranges. Plasma levels were particularly low in patients who received amino acid mixtures (AAMs-OAD) and L-isoleucine:L-leucine:L-valine (BCAA) ratio was 1.0:3.0:3.2. In UCD patients, plasma L-valine, L-isoleucine, and L-leucine levels lay below reference ranges in 18%, 30%, and 31%, respectively. In symptomatic UCD patients who received AAM-UCD, the median natural protein prescription lay below RDA, while their L-valine and L-isoleucine levels and plasma BCAA ratios were comparable to those in patients who did not receive AAM-UCD. Notably, in patients with ornithine transcarbamylase syndrome (OTC-D), carbamylphosphate synthetase 1 syndrome (CPS1-D) and hyperammonemia-hyperornithinemia-homocitrullinemia (HHH) syndrome selective L-citrulline supplementation resulted in higher plasma L-arginine levels than selective L-arginine supplementation. In conclusion, while MMA and PA patients who received AAMs-OAD had very low BCAA levels and disturbed plasma BCAA ratios, AAMs-UCD seemed to help UCD patients obtain normal BCAA levels. In patients with OTC-D, CPS1-D, and HHH syndrome, selective L-citrulline seemed preferable to selective L-arginine supplementation

    Organic acidurias: Major gaps, new challenges, and a yet unfulfilled promise

    Get PDF
    Organic acidurias (OADs) comprise a biochemically defined group of inherited metabolic diseases. Increasing awareness, reliable diagnostic work‐up, newborn screening programs for some OADs, optimized neonatal and intensive care, and the development of evidence‐based recommendations have improved neonatal survival and short‐term outcome of affected individuals. However, chronic progression of organ dysfunction in an aging patient population cannot be reliably prevented with traditional therapeutic measures. Evidence is increasing that disease progression might be best explained by mitochondrial dysfunction. Previous studies have demonstrated that some toxic metabolites target mitochondrial proteins inducing synergistic bioenergetic impairment. Although these potentially reversible mechanisms help to understand the development of acute metabolic decompensations during catabolic state, they currently cannot completely explain disease progression with age. Recent studies identified unbalanced autophagy as a novel mechanism in the renal pathology of methylmalonic aciduria, resulting in impaired quality control of organelles, mitochondrial aging and, subsequently, progressive organ dysfunction. In addition, the discovery of post‐translational short‐chain lysine acylation of histones and mitochondrial enzymes helps to understand how intracellular key metabolites modulate gene expression and enzyme function. While acylation is considered an important mechanism for metabolic adaptation, the chronic accumulation of potential substrates of short‐chain lysine acylation in inherited metabolic diseases might exert the opposite effect, in the long run. Recently, changed glutarylation patterns of mitochondrial proteins have been demonstrated in glutaric aciduria type 1. These new insights might bridge the gap between natural history and pathophysiology in OADs, and their exploitation for the development of targeted therapies seems promising

    Decreased plasma l-arginine levels in organic acidurias (MMA and PA) and decreased plasma branched-chain amino acid levels in urea cycle disorders as a potential cause of growth retardation: Options for treatment

    Full text link
    Background and aim Patients with methylmalonic acidemia (MMA) and propionic acidemia (PA) and urea cycle disorders (UCD), treated with a protein restricted diet, are prone to growth failure. To obtain optimal growth and thereby efficacious protein incorporation, a diet containing the essential and functional amino acids for growth is necessary. Optimal growth will result in improved protein tolerance and possibly a decrease in the number of decompensations. It thus needs to be determined if amino acid deficiencies are associated with the growth retardation in these patient groups. We studied the correlations between plasma L-arginine levels, plasma branched chain amino acids (BCAA: L-isoleucine, L-leucine and L-valine) levels (amino acids known to influence growth), and height in MMA/PA and UCD patients. Methods We analyzed data from longitudinal visits made in stable metabolic periods by patients registered at the European Registry and Network for Intoxication Type Metabolic Diseases (E-IMD, Chafea no. 2010 12 01). Results In total, 263 MMA/PA and 311 UCD patients were included, all aged below 18 years of age. In patients with MMA and PA, height z-score was positively associated with patients' natural-protein-to-energy prescription ratio and their plasma L-valine and L-arginine levels, while negatively associated with the amount of synthetic protein prescription and their age at visit. In all UCDs combined, height z-score was positively associated with the natural-protein-to-energy prescription ratio. In those with carbamylphosphate synthetase 1 deficiency (CPS1-D), those with male ornithine transcarbamylase deficiency (OTC-D), and those in the hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome subgroup, height z-score was positively associated with patients' plasma L-leucine levels. In those with argininosuccinate synthetase deficiency (ASS-D) and argininosuccinate lyase deficiency (ASL-D), height was positively associated with patients' plasma L-valine levels. Conclusion Plasma L-arginine and L-valine levels in MMA/PA patients and plasma L-leucine and L-valine levels in UCD patients, as well as the protein-to-energy prescription ratio in both groups were positively associated with height. Optimization of these plasma amino acid levels is essential to support normal growth and increase protein tolerance in these disorders. Consequently this could improve the protein-to-energy intake ratio
    corecore