16 research outputs found

    Active Metamaterials with Negative Static Electric Susceptibility

    Get PDF
    Although well‐established textbook arguments suggest that static electric susceptibility χ(0) must be positive in “all bodies,” it has been pointed out that materials that are not in thermodynamic equilibrium are not necessarily subject to this restriction. Media with inverted populations of atomic and molecular energy levels have been predicted theoretically to exhibit a χ(0) < 0 state, however the systems envisioned require reduced temperature, reduced pressure, and an external pump laser to maintain the population inversion. Further, the existence of χ(0) < 0 has never been confirmed experimentally. Here, a completely different approach is taken to the question of χ(0) < 0 and a design concept to achieve “true” χ(0) < 0 is proposed based on active metamaterials with internal power sources. Two active metamaterial structures are fabricated that, despite still having their power sources implemented externally for reasons of practical convenience, provide evidence in support of the general concept. Effective values are readily achieved at room temperature and pressure and are tunable throughout the range of stability −1 < χ(0) < 0, resulting in experimentally‐determined magnitudes that are over one thousand times greater than those predicted previously. Since χ(0) < 0 is the missing electric analog of diamagnetism, this work opens the door to new technological capabilities such as stable electrostatic levitation

    Wavelength tuning of the photonic band gap of an achiral nematic liquid crystal filled into a chiral polymer scaffold

    No full text
    In this paper, we demonstrate electric field-induced wavelength tuning of the entire photonic band-gap of an achiral nematic liquid crystal (LC) filled into a chiral polymer scaffold. This chiral polymer scaffold has been formed by creating a template of a chiral nematic LC phase, which remarkably does not compromise the optical finesse of the band-gap when compared to that of a conventional, polymer-stabilized chiral nematic LC. We present results on the spectral shift and temporal evolution of the photonic band-gap in the presence of an external a.c. electric field. It is shown that, initially, there is a rapid (τ ≈ 1 ms) blue-shift of the longwavelength band-edge followed by a considerably slower blue-shift (τ ≈ 6.5 s) of the entire band-gap. We compare the results with those obtained for a polymer-stabilized chiral nematic LC where only a blue-shift of the long-wavelength band-edge is observed. Consequently, we find that, for the templated sample, the tuning range is more than a factor of two greater than that observed for the polymer-stabilized chiral nematic LC for the same range of electric field amplitudes. It is also found that there is little in the way of hysteresis upon increasing and decreasing the applied electric field magnitude. Finally, we present experimental evidence that suggests that the blue-shift of the entire band-gap is due to an additional tuning mechanism present only for the case of the templated samples. This is believed to be caused by a contraction of the pitch that results from a translational motion of the polymer network. The greater tuning range observed in these templated samples are potentially important for the development of tunable 1-dimensional photonic band-gaps and LC lasers. Furthermore, it avoids the use of d.c. electric fields that can lead to long-term issues regarding stability

    Speckle contrast reduction of laser light using a chiral nematic liquid crystal diffuser

    No full text
    High coherence in laser light causes spatially distributed interference called speckle. In applications such as holographic projection, this undesirable side effect degrades image clarity. The current methods of speckle reduction, such as a rotating ground-glass diffuser, require additional bulky moving parts. Here, we present an alternative technology based upon a compact, electrohydrodynamic chiral nematic liquid crystal device. A spatially random phase modulation of the incident light is achieved through the electrohydrodynamic instabilities that are induced by an alternating electric field. Using a chiral nematic liquid crystal device that is doped with an ionic compound, we find that the speckle contrast can be reduced by as much as 80%

    Speckle contrast reduction of laser light using a chiral nematic liquid crystal diffuser

    No full text
    High coherence in laser light causes spatially distributed interference called speckle. In applications such as holographic projection, this undesirable side effect degrades image clarity. The current methods of speckle reduction, such as a rotating ground-glass diffuser, require additional bulky moving parts. Here, we present an alternative technology based upon a compact, electrohydrodynamic chiral nematic liquid crystal device. A spatially random phase modulation of the incident light is achieved through the electrohydrodynamic instabilities that are induced by an alternating electric field. Using a chiral nematic liquid crystal device that is doped with an ionic compound, we find that the speckle contrast can be reduced by as much as 80%

    Optical communication system performance using fibre Bragg grating dispersion compensators

    No full text
    Operating limits of a chirped fibre grating dispersion compensator are determined using a complete optical system model. A 10cm compensator extends the transmission range of an optimised 10Gbit/s MQW electroabsorption modulator from 80km to 425km

    Optimisation of the chirp performance of electroabsorption modulators using a numerical system model

    No full text
    A model to simulate an electroabsorption modulator in a dispersive communications system is described and confirmed experimentally for a 5Gbit/s 100km system. Optimisation of the device shows that transmission of 10Gbit/s over 100km is possible

    Femtosecond fiber Bragg grating fabrication with adaptive optics aberration compensation

    No full text
    We present fiber Bragg gratings (FBGs) fabricated using adaptive optics aberration compensation for the first time to the best of our knowledge. The FBGs are fabricated with a femtosecond laser by the point-by-point method using an air-based objective lens, removing the requirement for immersion oil or ferrules. We demonstrate a general phase correction strategy that can be used for accurate fabrication at any point in the fiber cross-section. We also demonstrate a beam-shaping approach that nullifies the aberration when focused inside a central fiber core. Both strategies give results which are in excellent agreement with coupled-mode theory. An extremely low wavelength polarization sensitivity of 4 pm is reported

    Single-mode sapphire fiber Bragg grating

    No full text
    Sapphire optical fiber has the ability to withstand ultrahigh temperatures and high radiation, but it is multimoded which prevents its use in many sensing applications. Problematically, Bragg gratings in such fiber exhibit multiple reflection peaks with a fluctuating power distribution. In this work, we write single-mode waveguides with Bragg gratings in sapphire using a novel multi-layer depressed cladding design in the 1550 nm telecommunications waveband. The Bragg gratings have a narrow bandwidth (<0.5 nm) and have survived annealing at 1000°C. The structures are inscribed with femtosecond laser direct writing, using adaptive beam shaping with a non-immersion objective. A single-mode sapphire fiber Bragg grating is created by writing a waveguide with a Bragg grating within a 425 µm diameter sapphire optical fiber, providing significant potential for accurate remote sensing in ultra-extreme environments

    Dynamic response of large tilt-angle flexoelectro-optic liquid crystal modulators

    No full text
    We present here the first time-resolved tilt-angle and retardance measurements for large-tilt (>45°) flexoelectro-optic liquid crystal modulators. These devices have potential for next generation fast switching (>1 kHz), 0-2π analog phase spatial light modulators (SLMs), with applications in optical beamsteering, microscopy and micromachining. The chiral nematic device used consisted of a mixture of CBC7CB and the chiral dopant R5011 in a nominally 5 µm-thick cell, aligned in the uniform lying helix mode. As the device is dynamically switched over angles of ± 54°, retardance changes of up to 0.17λ are observed. Furthermore, the time-resolved measurements reveal an asymmetry in the tilt in the optic-axis depending on the polarity of the applied electric field. The change in the optic-axis exhibits a pattern dependence, whereby it is determined by both the pulse history and the applied field. This pattern dependence results in tilt-angle errors of up to 8.8°, which could manifest as phase errors as large as 35.2° in potential SLMs. These time domain measurements may allow correction of these deterministic errors, to realize practical devices
    corecore