942 research outputs found
On the (non-)existence of polynomial kernels for Pl-free edge modification problems
Given a graph G = (V,E) and an integer k, an edge modification problem for a
graph property P consists in deciding whether there exists a set of edges F of
size at most k such that the graph H = (V,E \vartriangle F) satisfies the
property P. In the P edge-completion problem, the set F of edges is constrained
to be disjoint from E; in the P edge-deletion problem, F is a subset of E; no
constraint is imposed on F in the P edge-edition problem. A number of
optimization problems can be expressed in terms of graph modification problems
which have been extensively studied in the context of parameterized complexity.
When parameterized by the size k of the edge set F, it has been proved that if
P is an hereditary property characterized by a finite set of forbidden induced
subgraphs, then the three P edge-modification problems are FPT. It was then
natural to ask whether these problems also admit a polynomial size kernel.
Using recent lower bound techniques, Kratsch and Wahlstrom answered this
question negatively. However, the problem remains open on many natural graph
classes characterized by forbidden induced subgraphs. Kratsch and Wahlstrom
asked whether the result holds when the forbidden subgraphs are paths or cycles
and pointed out that the problem is already open in the case of P4-free graphs
(i.e. cographs). This paper provides positive and negative results in that line
of research. We prove that parameterized cograph edge modification problems
have cubic vertex kernels whereas polynomial kernels are unlikely to exist for
the Pl-free and Cl-free edge-deletion problems for large enough l
Vertex Cover Kernelization Revisited: Upper and Lower Bounds for a Refined Parameter
An important result in the study of polynomial-time preprocessing shows that
there is an algorithm which given an instance (G,k) of Vertex Cover outputs an
equivalent instance (G',k') in polynomial time with the guarantee that G' has
at most 2k' vertices (and thus O((k')^2) edges) with k' <= k. Using the
terminology of parameterized complexity we say that k-Vertex Cover has a kernel
with 2k vertices. There is complexity-theoretic evidence that both 2k vertices
and Theta(k^2) edges are optimal for the kernel size. In this paper we consider
the Vertex Cover problem with a different parameter, the size fvs(G) of a
minimum feedback vertex set for G. This refined parameter is structurally
smaller than the parameter k associated to the vertex covering number vc(G)
since fvs(G) <= vc(G) and the difference can be arbitrarily large. We give a
kernel for Vertex Cover with a number of vertices that is cubic in fvs(G): an
instance (G,X,k) of Vertex Cover, where X is a feedback vertex set for G, can
be transformed in polynomial time into an equivalent instance (G',X',k') such
that |V(G')| <= 2k and |V(G')| <= O(|X'|^3). A similar result holds when the
feedback vertex set X is not given along with the input. In sharp contrast we
show that the Weighted Vertex Cover problem does not have a polynomial kernel
when parameterized by the cardinality of a given vertex cover of the graph
unless NP is in coNP/poly and the polynomial hierarchy collapses to the third
level.Comment: Published in "Theory of Computing Systems" as an Open Access
publicatio
The hardness of perfect phylogeny, feasible register assignment and other problems on thin colored graphs
AbstractIn this paper, we consider the complexity of a number of combinatorial problems; namely, Intervalizing Colored Graphs (DNA physical mapping), Triangulating Colored Graphs (perfect phylogeny), (Directed) (Modified) Colored Cutwidth, Feasible Register Assignment and Module Allocation for graphs of bounded pathwidth. Each of these problems has as a characteristic a uniform upper bound on the tree or path width of the graphs in “yes”-instances. For all of these problems with the exceptions of Feasible Register Assignment and Module Allocation, a vertex or edge coloring is given as part of the input. Our main results are that the parameterized variant of each of the considered problems is hard for the complexity classes W[t] for all t∈N. We also show that Intervalizing Colored Graphs, Triangulating Colored Graphs, and Colored Cutwidth are NP-Complete
Tight Kernel Bounds for Problems on Graphs with Small Degeneracy
In this paper we consider kernelization for problems on d-degenerate graphs,
i.e. graphs such that any subgraph contains a vertex of degree at most .
This graph class generalizes many classes of graphs for which effective
kernelization is known to exist, e.g. planar graphs, H-minor free graphs, and
H-topological-minor free graphs. We show that for several natural problems on
d-degenerate graphs the best known kernelization upper bounds are essentially
tight.Comment: Full version of ESA 201
Structural parameterizations for boxicity
The boxicity of a graph is the least integer such that has an
intersection model of axis-aligned -dimensional boxes. Boxicity, the problem
of deciding whether a given graph has boxicity at most , is NP-complete
for every fixed . We show that boxicity is fixed-parameter tractable
when parameterized by the cluster vertex deletion number of the input graph.
This generalizes the result of Adiga et al., that boxicity is fixed-parameter
tractable in the vertex cover number.
Moreover, we show that boxicity admits an additive -approximation when
parameterized by the pathwidth of the input graph.
Finally, we provide evidence in favor of a conjecture of Adiga et al. that
boxicity remains NP-complete when parameterized by the treewidth.Comment: 19 page
Recommended from our members
Dissolution behavior of FFTF fuel
These tests, using FFTF fuel, show that fuel fragmentation and dislodgement from the cladding occurs rather early in the dissolution. The large surface areas of the fuel fragments will lead to rapid dissolution, certainly more rapid than would be expected if the fuel remained within the cladding and dissolved from the open ends, as is sometimes assumed
On problems without polynomial kernels (Extended abstract).
Abstract. Kernelization is a central technique used in parameterized algorithms, and in other techniques for coping with NP-hard problems. In this paper, we introduce a new method which allows us to show that many problems do not have polynomial size kernels under reasonable complexity-theoretic assumptions. These problems include kPath, k-Cycle, k-Exact Cycle, k-Short Cheap Tour, k-Graph Minor Order Test, k-Cutwidth, k-Search Number, k-Pathwidth, k-Treewidth, k-Branchwidth, and several optimization problems parameterized by treewidth or cliquewidth
Recommended from our members
Spectroscopic and x-ray diffraction studies of the bromides of californium- 249 and einsteinium-253
PhyloToAST: Bioinformatics Tools for Species-Level Analysis and Visualization of Complex Microbial Datasets
The 16S rRNA gene is widely used for taxonomic profiling of microbial ecosystems; and recent advances in sequencing chemistry have allowed extremely large numbers of sequences to be generated from minimal amounts of biological samples. Analysis speed and resolution of data to species-level taxa are two important factors in large-scale explorations of complex microbiomes using 16S sequencing. We present here new software, Phylogenetic Tools for Analysis of Species-level Taxa (PhyloToAST), that completely integrates with the QIIME pipeline to improve analysis speed, reduce primer bias (requiring two sequencing primers), enhance species-level analysis, and add new visualization tools. The code is free and open source, and can be accessed at http://phylotoast.org
- …