4 research outputs found

    Sulf1 influences the Shh morphogen gradient during the dorsal ventral patterning of the neural tube in Xenopus tropicalis

    Get PDF
    AbstractGenetic studies have established that heparan sulphate proteoglycans (HSPGs) are required for signalling by key developmental regulators, including Hedgehog, Wnt/Wg, FGF, and BMP/Dpp. Post-synthetic remodelling of heparan sulphate (HS) by Sulf1 has been shown to modulate these same signalling pathways. Sulf1 codes for an N-acetylglucosamine 6-O-endosulfatase, an enzyme that specifically removes the 6-O sulphate group from glucosamine in highly sulfated regions of HS chains. One striking aspect of Sulf1 expression in all vertebrates is its co-localisation with that of Sonic hedgehog in the floor plate of the neural tube. We show here that Sulf1 is required for normal specification of neural progenitors in the ventral neural tube, a process known to require a gradient of Shh activity. We use single-cell injection of mRNA coding for GFP-tagged Shh in early Xenopus embryos and find that Sulf1 restricts ligand diffusion. Moreover, we find that the endogenous distribution of Shh protein in Sulf1 knockdown embryos is altered, where a less steep ventral to dorsal gradient forms in the absence of Sulf1, resulting in more a diffuse distribution of Shh. These data point to an important role for Sulf1 in the ventral neural tube, and suggests a mechanism whereby Sulf1 activity shapes the Shh morphogen gradient by promoting ventral accumulation of high levels of Shh protein

    Wnt-dependent osteogenic commitment of bone marrow stromal cells using a novel GSK3β inhibitor

    Full text link
    Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) can differentiate into multiple lineages including osteogenic and adipogenic cells. Wnt signalling has been implicated in controlling BMSC fate, but the mechanisms are unclear and apparently conflicting data exist. Here we show that a novel glycogen synthase kinase 3β inhibitor, AR28, is a potent activator of canonical Wnt signalling using in vitro β-catenin translocation studies and TCF-reporter assays. In vivo, AR28 induced characteristic axis duplication and secondary regions of chordin expression in Xenopus laevis embryos. Using human BMSCs grown in adipogenic medium, we confirmed that AR28-mediated Wnt signalling caused a significant (p < 0.05) dose-dependent reduction of adipogenic markers. In osteogenic media, including dexamethasone, AR28 caused significant (p < 0.05) decreases in alkaline phosphatase (ALP) activity compared to vehicle controls, indicative of a reduced osteogenic response. However, when excluding dexamethasone from the osteogenic media, increases in both ALP and mineralisation were identified following AR28 treatment, which was blocked by mitomycin C. Pre-treatment of BMSCs with AR28 for 7 days before osteogenic induction also increased ALP activity and mineralisation. Furthermore, BMP2-induced osteogenic differentiation was strongly enhanced by AR28 addition within 3 days, but without concomitant changes in cell number, therefore revealing BMP-dependent and independent mechanisms for Wnt-induced osteogenesis
    corecore