3,407 research outputs found

    Chaotic itinerancy and power-law residence time distribution in stochastic dynamical system

    Full text link
    To study a chaotic itinerant motion among varieties of ordered states, we propose a stochastic model based on the mechanism of chaotic itinerancy. The model consists of a random walk on a half-line, and a Markov chain with a transition probability matrix. To investigate the stability of attractor ruins in the model, we analyze the residence time distribution of orbits at attractor ruins. We show that the residence time distribution averaged by all attractor ruins is given by the superposition of (truncated) power-law distributions, if a basin of attraction for each attractor ruin has zero measure. To make sure of this result, we carry out a computer simulation for models showing chaotic itinerancy. We also discuss the fact that chaotic itinerancy does not occur in coupled Milnor attractor systems if the transition probability among attractor ruins can be represented as a Markov chain.Comment: 6 pages, 10 figure

    A Random Walk to a Non-Ergodic Equilibrium Concept

    Full text link
    Random walk models, such as the trap model, continuous time random walks, and comb models exhibit weak ergodicity breaking, when the average waiting time is infinite. The open question is: what statistical mechanical theory replaces the canonical Boltzmann-Gibbs theory for such systems? In this manuscript a non-ergodic equilibrium concept is investigated, for a continuous time random walk model in a potential field. In particular we show that in the non-ergodic phase the distribution of the occupation time of the particle on a given lattice point, approaches U or W shaped distributions related to the arcsin law. We show that when conditions of detailed balance are applied, these distributions depend on the partition function of the problem, thus establishing a relation between the non-ergodic dynamics and canonical statistical mechanics. In the ergodic phase the distribution function of the occupation times approaches a delta function centered on the value predicted based on standard Boltzmann-Gibbs statistics. Relation of our work with single molecule experiments is briefly discussed.Comment: 14 pages, 6 figure

    Discrete Spectra of Semirelativistic Hamiltonians

    Get PDF
    We review various attempts to localize the discrete spectra of semirelativistic Hamiltonians of the form H = \beta \sqrt{m^2 + p^2} + V(r) (w.l.o.g. in three spatial dimensions) as entering, for instance, in the spinless Salpeter equation. Every Hamiltonian in this class of operators consists of the relativistic kinetic energy \beta \sqrt{m^2 + p^2} (where \beta > 0 allows for the possibility of more than one particles of mass m) and a spherically symmetric attractive potential V(r), r = |x|. In general, accurate eigenvalues of a nonlocal Hamiltonian operator can only be found by the use of a numerical approximation procedure. Our main emphasis, however, is on the derivation of rigorous semi-analytical expressions for both upper and lower bounds to the energy levels of such operators. We compare the bounds obtained within different approaches and present relationships existing between the bounds.Comment: 21 pages, 3 figure

    Equilibrium of anchored interfaces with quenched disordered growth

    Get PDF
    The roughening behavior of a one-dimensional interface fluctuating under quenched disorder growth is examined while keeping an anchored boundary. The latter introduces detailed balance conditions which allows for a thorough analysis of equilibrium aspects at both macroscopic and microscopic scales. It is found that the interface roughens linearly with the substrate size only in the vicinity of special disorder realizations. Otherwise, it remains stiff and tilted.Comment: 6 pages, 3 postscript figure

    Small violations of full correlation Bell inequalities for multipartite pure random states

    Full text link
    We estimate the probability of random NN-qudit pure states violating full-correlation Bell inequalities with two dichotomic observables per site. These inequalities can show violations that grow exponentially with NN, but we prove this is not the typical case. For many-qubit states the probability to violate any of these inequalities by an amount that grows linearly with NN is vanishingly small. If each system's Hilbert space dimension is larger than two, on the other hand, the probability of seeing \emph{any} violation is already small. For the qubits case we discuss furthermore the consequences of this result for the probability of seeing arbitrary violations (\emph i.e., of any order of magnitude) when experimental imperfections are considered.Comment: 16 pages, one colum

    From laser cooling to aging: a unified Levy flight description

    Full text link
    Intriguing phenomena such as subrecoil laser cooling of atoms, or aging phenomenon in glasses, have in common that the systems considered do not reach a steady-state during the experiments, although the experimental time scales are very large compared to the microscopic ones. We revisit some standard models describing these phenomena, and reformulate them in a unified framework in terms of lifetimes of the microscopic states of the system. A universal dynamical mechanism emerges, leading to a generic time-dependent distribution of lifetimes, independently of the physical situation considered.Comment: 8 pages, 2 figures; accepted for publication in American Journal of Physic

    Dephasing by a nonstationary classical intermittent noise

    Get PDF
    We consider a new phenomenological model for a 1/fÎŒ1/f^{\mu} classical intermittent noise and study its effects on the dephasing of a two-level system. Within this model, the evolution of the relative phase between the ∣±>|\pm> states is described as a continuous time random walk (CTRW). Using renewal theory, we find exact expressions for the dephasing factor and identify the physically relevant various regimes in terms of the coupling to the noise. In particular, we point out the consequences of the non-stationarity and pronounced non-Gaussian features of this noise, including some new anomalous and aging dephasing scenarii.Comment: Submitted to Phys. Rev.

    Fractal time random walk and subrecoil laser cooling considered as renewal processes with infinite mean waiting times

    Full text link
    There exist important stochastic physical processes involving infinite mean waiting times. The mean divergence has dramatic consequences on the process dynamics. Fractal time random walks, a diffusion process, and subrecoil laser cooling, a concentration process, are two such processes that look qualitatively dissimilar. Yet, a unifying treatment of these two processes, which is the topic of this pedagogic paper, can be developed by combining renewal theory with the generalized central limit theorem. This approach enables to derive without technical difficulties the key physical properties and it emphasizes the role of the behaviour of sums with infinite means.Comment: 9 pages, 7 figures, to appear in the Proceedings of Cargese Summer School on "Chaotic dynamics and transport in classical and quantum systems

    Motional Broadening in Ensembles With Heavy-Tail Frequency Distribution

    Full text link
    We show that the spectrum of an ensemble of two-level systems can be broadened through `resetting' discrete fluctuations, in contrast to the well-known motional-narrowing effect. We establish that the condition for the onset of motional broadening is that the ensemble frequency distribution has heavy tails with a diverging first moment. We find that the asymptotic motional-broadened lineshape is a Lorentzian, and derive an expression for its width. We explain why motional broadening persists up to some fluctuation rate, even when there is a physical upper cutoff to the frequency distribution.Comment: 6 pages, 4 figure

    Ballistic Annihilation Kinetics: The Case of Discrete Velocity Distributions

    Full text link
    The kinetics of the annihilation process, A+A→0A+A\to 0, with ballistic particle motion is investigated when the distribution of particle velocities is {\it discrete}. This discreteness is the source of many intriguing phenomena. In the mean field limit, the densities of different velocity species decay in time with different power law rates for many initial conditions. For a one-dimensional symmetric system containing particles with velocity 0 and ±1\pm 1, there is a particular initial state for which the concentrations of all three species as decay as t−2/3t^{-2/3}. For the case of a fast ``impurity'' in a symmetric background of ++ and −- particles, the impurity survival probability decays as exp⁥(−const.×ln⁥2t)\exp(-{\rm const.}\times \ln^2t). In a symmetric 4-velocity system in which there are particles with velocities ±v1\pm v_1 and ±v2\pm v_2, there again is a special initial condition where the two species decay at the same rate, t^{-\a}, with \a\cong 0.72. Efficient algorithms are introduced to perform the large-scale simulations necessary to observe these unusual phenomena clearly.Comment: 18 text pages, macro file included, hardcopy of 9 figures available by email request to S
    • 

    corecore