8 research outputs found

    Topological Analysis of Small Leucine-Rich Repeat Proteoglycan Nyctalopin

    Get PDF
    Nyctalopin is a small leucine rich repeat proteoglycan (SLRP) whose function is critical for normal vision. The absence of nyctalopin results in the complete form of congenital stationary night blindness. Normally, glutamate released by photoreceptors binds to the metabotropic glutamate receptor type 6 (GRM6), which through a G-protein cascade closes the non-specific cation channel, TRPM1, on the dendritic tips of depolarizing bipolar cells (DBCs) in the retina. Nyctalopin has been shown to interact with TRPM1 and expression of TRPM1 on the dendritic tips of the DBCs is dependent on nyctalopin expression. In the current study, we used yeast two hybrid and biochemical approaches to investigate whether murine nyctalopin was membrane bound, and if so by what mechanism, and also whether the functional form was as a homodimer. Our results show that murine nyctalopin is anchored to the plasma membrane by a single transmembrane domain, such that the LRR domain is located in the extracellular space

    Recoil imaging for dark matter, neutrinos, and physics beyond the Standard Model

    No full text
    Recoil imaging entails the detection of spatially resolved ionization tracks generated by particle interactions. This is a highly sought-after capability in many classes of detector, with broad applications across particle and astroparticle physics. However, at low energies, where ionization signatures are small in size, recoil imaging only seems to be a practical goal for micro-pattern gas detectors. This white paper outlines the physics case for recoil imaging, and puts forward a decadal plan to advance towards the directional detection of low-energy recoils with sensitivity and resolution close to fundamental performance limits. The science case covered includes: the discovery of dark matter into the neutrino fog, directional detection of sub-MeV solar neutrinos, the precision study of coherent-elastic neutrino-nucleus scattering, the detection of solar axions, the measurement of the Migdal effect, X-ray polarimetry, and several other applied physics goals. We also outline the R&D programs necessary to test concepts that are crucial to advance detector performance towards their fundamental limit: single primary electron sensitivity with full 3D spatial resolution at the ∌\sim100 micron-scale. These advancements include: the use of negative ion drift, electron counting with high-definition electronic readout, time projection chambers with optical readout, and the possibility for nuclear recoil tracking in high-density gases such as argon. We also discuss the readout and electronics systems needed to scale-up such detectors to the ton-scale and beyond

    Recoil imaging for directional detection of dark matter, neutrinos, and physics beyond the Standard Model

    Get PDF
    Recoil imaging entails the detection of spatially resolved ionization tracks generated by particle interactions. This is a highly sought-after capability in many classes of detector, with broad applications across particle and astroparticle physics. However, at low energies, where ionization signatures are small in size, recoil imaging only seems to be a practical goal for micro-pattern gas detectors. This white paper outlines the physics case for recoil imaging, and puts forward a decadal plan to advance towards the directional detection of low-energy recoils with sensitivity and resolution close to fundamental performance limits. The science case covered includes: the discovery of dark matter into the neutrino fog, directional detection of sub-MeV solar neutrinos, the precision study of coherent-elastic neutrino-nucleus scattering, the detection of solar axions, the measurement of the Migdal effect, X-ray polarimetry, and several other applied physics goals. We also outline the R&D programs necessary to test concepts that are crucial to advance detector performance towards their fundamental limit: single primary electron sensitivity with full 3D spatial resolution at the ∌\sim100 micron-scale. These advancements include: the use of negative ion drift, electron counting with high-definition electronic readout, time projection chambers with optical readout, and the possibility for nuclear recoil tracking in high-density gases such as argon. We also discuss the readout and electronics systems needed to scale-up such detectors to the ton-scale and beyond.Comment: 77 pages, 20 figures. Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021

    Die entzĂŒndlich-infektiösen und parasitĂ€ren Knochenerkrankungen

    No full text
    corecore