18 research outputs found

    Rheological and biological properties of a hydrogel support for cells intended for intervertebral disc repair

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cell-based approaches towards restoration of prolapsed or degenerated intervertebral discs are hampered by a lack of measures for safe administration and placement of cell suspensions within a treated disc. In order to overcome these risks, a serum albumin-based hydrogel has been developed that polymerizes after injection and anchors the administered cell suspension within the tissue.</p> <p>Methods</p> <p>A hydrogel composed of chemically activated albumin crosslinked by polyethylene glycol spacers was produced. The visco-elastic gel properties were determined by rheological measurement. Human intervertebral disc cells were cultured <it>in vitro </it>and <it>in vivo </it>in the hydrogel and their phenotype was tested by reverse-transcriptase polymerase chain reaction. Matrix production and deposition was monitored by immuno-histology and by biochemical analysis of collagen and glycosaminoglycan deposition. Species specific <it>in situ </it>hybridization was performed to discriminate between cells of human and murine origin in xenotransplants.</p> <p>Results</p> <p>The reproducibility of the gel formation process could be demonstrated. The visco-elastic properties were not influenced by storage of gel components. <it>In vitro </it>and <it>in vivo </it>(subcutaneous implants in mice) evidence is presented for cellular differentiation and matrix deposition within the hydrogel for human intervertebral disc cells even for donor cells that have been expanded in primary monolayer culture, stored in liquid nitrogen and re-activated in secondary monolayer culture. Upon injection into the animals, gels formed spheres that lasted for the duration of the experiments (14 days). The expression of cartilage- and disc-specific mRNAs was maintained in hydrogels <it>in vitro </it>and <it>in vivo</it>, demonstrating the maintenance of a stable specific cellular phenotype, compared to monolayer cells. Significantly higher levels of hyaluronan synthase isozymes-2 and -3 mRNA suggest cell functionalities towards those needed for the support of the regeneration of the intervertebral disc. Moreover, mouse implanted hydrogels accumulated 5 times more glycosaminoglycans and 50 times more collagen than the <it>in vitro </it>cultured gels, the latter instead releasing equivalent quantities of glycosaminoglycans and collagen into the culture medium. Matrix deposition could be specified by immunohistology for collagen types I and II, and aggrecan and was found only in areas where predominantly cells of human origin were detected by species specific <it>in situ </it>hybridization.</p> <p>Conclusions</p> <p>The data demonstrate that the hydrogels form stable implants capable to contain a specifically functional cell population within a physiological environment.</p

    Venous Blood Derivatives as FBS-Substitutes for Mesenchymal Stem Cells: A Systematic Scoping Review

    Full text link

    Immune Modulation to Improve Tissue Engineering Outcomes for Cartilage Repair in the Osteoarthritic Joint

    No full text
    Osteoarthritis (OA), the most common form of arthritis, is a disabling degenerative joint disease affecting synovial joints and is associated with cartilage destruction, inflammation of the synovial membrane, and subchondral bone remodeling. Inflammation of the synovial membrane may arise secondary to degenerative processes in articular cartilage (AC), or may be a primary occurrence in OA pathogenesis. However, synovial inflammation plays a key role in the pathogenesis and disease progression of OA through the production of pro-inflammatory mediators, and is associated with cartilage destruction and pain. The triggers that initiate activation of the immune response in OA are unknown, but crosstalk between osteoarthritic chondrocytes, cartilage degradation products, and the synovium may act to perpetuate this response. Increasing evidence has emerged highlighting an important role for pro-inflammatory mediators and infiltrating inflammatory cell populations in the progression of the disease. Tissue engineering strategies hold great potential for the repair of damaged AC in an osteoarthritic joint. However, an in-depth understanding of how OA-associated inflammation impacts chondrocyte and progenitor cell behavior is required to achieve efficient cartilage regeneration in a catabolic osteoarthritic environment. In this review, we will discuss the role of inflammation in OA, and investigate novel immune modulation strategies that may prevent disease progression and facilitate successful cartilage regeneration for the treatment of OA

    Definite descriptions and negative existential quantifiers

    Get PDF
    Previous theorists have claimed that Russell’s theory of definite descriptions gives the wrong truth conditions to sentences in which definite descriptions are embedded under certain other operators; but the other operators used, such as conditionals and propositional attitude verbs, have introduced intensional and hyperintensional complications that might be thought to obscure the point against Russell. This paper shows that the same kind of problem arises when the operator in question (English ‘no’) allows the context to be extensional. It is further argued that presuppositional theories of definite descriptions give intuitively satisfying analyses of the novel data
    corecore