2 research outputs found

    Predictive significance of the six-minute walk distance for long-term survival in chronic hypercapnic respiratory failure

    Get PDF
    Background: The 6-min walk distance ( 6-MWD) is a global marker of functional capacity and prognosis in chronic obstructive pulmonary disease ( COPD), but less explored in other chronic respiratory diseases. Objective: To study the role of 6-MWD in chronic hypercapnic respiratory failure ( CHRF). Methods: In 424 stable patients with CHRF and non-invasive ventilation ( NIV) comprising COPD ( n = 197), restrictive diseases ( RD; n = 112) and obesity-hypoventilation- syndrome ( OHS; n = 115), the prognostic value of 6-MWD for long- term survival was assessed in relation to that of body mass index (BMI), lung function, respiratory muscle function and laboratory parameters. Results: 6-MWD was reduced in patients with COPD ( median 280 m; quartiles 204/350 m) and RD ( 290 m; 204/362 m) compared to OHS ( 360 m; 275/440 m; p <0.001 each). Overall mortality during 24.9 (13.1/40.5) months was 22.9%. In the 424 patients with CHRF, 6-MWD independently predicted mortality in addition to BMI, leukocytes and forced expiratory volume in 1 s ( p <0.05 each). In COPD, 6-MWD was strongly associated with mortality using the median {[} p <0.001, hazard ratio ( HR) = 3.75, 95% confidence interval (CI): 2.24-6.38] or quartiles as cutoff levels. In contrast, 6-MWD was only significantly associated with impaired survival in RD patients when it was reduced to 204 m or less (1st quartile; p = 0.003, HR = 3.31, 95% CI: 1.73-14.10), while in OHS 6-MWD had not any prognostic value. Conclusions: In patients with CHRF and NIV, 6-MWD was predictive for long- term survival particularly in COPD. In RD only severely reduced 6-MWD predicted mortality, while in OHS 6-MWD was relatively high and had no prognostic value. These results support a disease-specific use of 6-MWD in the routine assessment of patients with CHRF. Copyright (C) 2007 S. Karger AG, Basel

    In vitro comparison of implant- versus gingiva-supported removable dentures in anterior and posterior applications

    No full text
    Objectives Removable dentures with different denture teeth may provide different performance and resistance in implant and gingival situations, or anterior and posterior applications. Materials and methods Two situations of removable dentures were investigated: gingiva (flexible) and implant (rigid) bearing. For simulating the gingiva/jaw situation, the dentures were supported with flexible lining material. For the implant situation, implants (d=4.1 mm) were screwed into polymethylenmethacrylate (PMMA) resin. Two commercial (Vita-Physiodens MRP, SR Vivodent/Orthotyp DCL) and two experimental materials (EXP1, EXP2) were investigated in anterior (A) and posterior (P) tooth locations. Chewing simulation was performed, and failures were analyzed (microscopy, SEM). Fracture strength of surviving dentures was determined. Results Only EXP1 revealed failures during chewing simulation. Failures varied between anterior and posterior locations, and between implant (P:4x; A:7x) or gingiva (P:1x; A:2x) situations. Kaplan-Meier log-rank test revealed significant differences for implant situations (p0.093). Fracture testing in the implant situation provided significantly highest values for EXP2 (1476.4 +/- 532.2 N) in posterior location, and for DCL (1575.4 +/- 264.4 N) and EXP2 (1797.0 +/- 604.2 N) in anterior location. For gingival bearing, significantly highest values were found for DCL/P (2148.3 +/- 836.3 N), and significantly lowest results for EXP1/A (308.2 +/- 115.6 N). For EXP1+ EXP2+ Vita/P and for EXP1/A no significant differences were found between implant-or gingiva-supported situations. Conclusions Anterior and posterior teeth showed different material-dependent in vitro performance, further influenced by implant/gingiva bearing. While an implant in anterior application increased fracture strength of two materials, it decreased fracture values of 3/4 of the materials in posterior application. Clinical relevance Survival of denture teeth may be influenced by material, oral position, and bearing situation
    corecore