2,288 research outputs found

    Improving Third-Party Relaying for LTE-A: A Realistic Simulation Approach

    Full text link
    In this article we propose solutions to diverse conflicts that result from the deployment of the (still immature) relay node (RN) technology in LTE-A networks. These conflicts and their possible solutions have been observed by implementing standard-compliant relay functionalities on the Vienna simulator. As an original experimental approach, we model realistic RN operation, taking into account that transmitters are not active all the time due to half-duplex RN operation. We have rearranged existing elements in the simulator in a manner that emulates RN behavior, rather than implementing a standalone brand-new component for the simulator. We also study analytically some of the issues observed in the interaction between the network and the RNs, to draw conclusions beyond simulation observation. The main observations of this paper are that: ii) Additional time-varying interference management steps are needed, because the LTE-A standard employs a fixed time division between eNB-RN and RN-UE transmissions (typical relay capacity or throughput research models balance them optimally, which is unrealistic nowadays); iiii) There is a trade-off between the time-division constraints of relaying and multi-user diversity; the stricter the constraints on relay scheduling are, the less flexibility schedulers have to exploit channel variation; and iiiiii) Thee standard contains a variety of parameters for relaying configuration, but not all cases of interest are covered.Comment: 17 one-column pages, 9 figures, accepted for publication in IEEE ICC 2014 MW

    Natural inflation in 5D warped backgrounds

    Full text link
    In light of the five-year data from the Wilkinson Microwave Anisotropy Probe (WMAP), we discuss models of inflation based on the pseudo Nambu-Goldstone potential predicted in five-dimensional gauge theories for different backgrounds: flat Minkowski, anti-de Sitter, and dilatonic spacetime. In this framework, the inflaton potential is naturally flat due to shift symmetries and the mass scales associated with it are related to 5D geometrical quantities.Comment: 10 pages, 8 figures; matches version to appear in Phys. Rev.

    Baryon anticorrelations and the Pauli principle in PYTHIA

    Full text link
    We present a computational investigation of a problem of hadron collisions from recent years, that of baryon anticorrelations. This is an experimental dearth of baryons near other baryons in phase space, not seen upon examining numerical Monte Carlo simulations. We have addressed one of the best known Monte Carlo codes, PYTHIA, to see what baryon (anti)correlations it produces, where they are originated at the string-fragmentation level in the underlying Lund model, and what simple modifications could lead to better agreement with data. We propose two ad-hoc alterations of the fragmentation code, a "one-baryon" and an "always-baryon" policies that qualitatively reproduce the data behaviour, i.e anticorrelation, and suggest that lacking Pauli-principle induced corrections at the quark level could be the culprit behind the current disagreement between computations and experiment.Comment: 16 pages, 25 plot

    Radiatively induced leptogenesis in a minimal seesaw model

    Full text link
    We study the possibility that the baryon asymmetry of the universe is generated in a minimal seesaw scenario where two right-handed Majorana neutrinos with degenerate masses are added to the standard model particle content. In the usual framework of thermal leptogenesis, a nonzero CPCP asymmetry can be obtained through the mass splitting induced by the running of the heavy Majorana neutrino masses from their degeneracy scale down to the seesaw scale. Although, in the light of the present neutrino oscillation data, the produced baryon asymmetry turns out to be smaller than the experimental value, the present mechanism could be viable in simple extensions of the standard model.Comment: 6 pages, 2 figures, uses RevTeX4, calculations improved, comments adde

    Magnetized strangelets at finite temperature

    Get PDF
    The main properties of magnetized strangelets, namely, their energy per baryon, radius and electric charge, are studied. Temperature effects are also taken into account in order to study their stability compared to the 56Fe isotope and non-magnetized strangelets using the liquid drop model. Massive quarks are considered with the aim to have a more realistic description for strangelets in the astrophysical context and the environment of heavy ion colliders, playing also an important role in the thermodynamical quantities of the quark gas. It is concluded that the presence of a magnetic field tends to stabilize more the strangelets, even when temperature effects are taken into account. Magnetized strangelets in a paired superconductor phase (magnetized color flavor locked phase) are also discussed. It is shown that they are more stable than ordinary magnetized strangelets for typical gap values of the order of O(100) MeV.Comment: 10 pages, 10 figures, discussion extended, new references adde

    Model reduction for molecular diffusion in nanoporous media

    Full text link
    Porous materials are widely used for applications in gas storage and separation. The diffusive properties of a variety of gases in porous media can be modeled using molecular dynamics simulations that can be computationally demanding depending on the pore geometry, complexity and amount of gas adsorbed. We explore a dimensionality reduction approach for estimating the self-diffusion coefficient of gases in simple pores using Langevin dynamics, such that the three-dimensional (3D) atomistic interactions that determine the diffusion properties of realistic systems can be reduced to an effective one-dimensional (1D) diffusion problem along the pore axis. We demonstrate the approach by modeling the transport of nitrogen molecules in single-walled carbon nanotubes of different radii, showing that 1D Langevin models can be parametrized with a few single-particle 3D atomistic simulations. The reduced 1D model predicts accurate diffusion coefficients over a broad range of temperatures and gas densities. Our work paves the way for studying the diffusion process of more general porous materials as zeolites or metal-organics frameworks with effective models of reduced complexity.Comment: 8 pages, 6 figure

    Neutrinos and the matter-antimatter asymmetry in the Universe

    Full text link
    The discovery of neutrino oscillations provides a solid evidence for nonzero neutrino masses and leptonic mixing. The fact that neutrino masses are so tiny constitutes a puzzling problem in particle physics. From the theoretical viewpoint, the smallness of neutrino masses can be elegantly explained through the seesaw mechanism. Another challenging issue for particle physics and cosmology is the explanation of the matter-antimatter asymmetry observed in Nature. Among the viable mechanisms, leptogenesis is a simple and well-motivated framework. In this talk we briefly review these aspects, making emphasis on the possibility of linking neutrino physics to the cosmological baryon asymmetry originated from leptogenesis.Comment: 8 pages, 1 table, 1 figure; Based on talk given at the Symposium STARS2011, 1 - 4 May 2011, Havana, Cuba; to be published in the Proceeding

    A Dynamical Scheme for a Large CP-Violating Phase

    Get PDF
    A dynamical scheme where the third generation of quarks plays a distinctive role is implemented. New interactions with a θ\theta term induce the breaking of the electroweak symmetry and the top-bottom mass splitting. A large CP-violating phase naturally follows from the latter.Comment: 10 pages, LaTe

    Aspects of thermal leptogenesis in braneworld cosmology

    Full text link
    The mechanism of thermal leptogenesis is investigated in the high-energy regime of braneworld cosmology. Within the simplest seesaw framework with hierarchical heavy Majorana neutrinos, we study the implications of the modified Friedmann equation on the realization of this mechanism. In contrast with the usual leptogenesis scenario of standard cosmology, where low-energy neutrino data favors a mildly strong washout regime, we find that leptogenesis in the braneworld regime is successfully realized in a weak washout regime. Furthermore, a quasi-degenerate light neutrino mass spectrum is found to be compatible with this scenario. For an initially vanishing heavy Majorana neutrino abundance, thermal leptogenesis in the brane requires the decaying heavy Majorana neutrino mass to be M1 > 10^10 GeV and the fundamental five-dimensional gravity scale 10^12 < M5 < 10^16 GeV, which corresponds to a transition from brane to standard cosmology at temperatures 10^8 < Tt < 10^14 GeV.Comment: 7 pages, 3 figures, a few comments and references added. Final version to appear in Phys. Rev.
    corecore