9,006 research outputs found

    Testing general relativity by micro-arcsecond global astrometry

    Full text link
    The global astrometric observations of a GAIA-like satellite were modeled within the PPN formulation of Post-Newtonian gravitation. An extensive experimental campaign based on realistic end-to-end simulations was conducted to establish the sensitivity of global astrometry to the PPN parameter \gamma, which measures the amount of space curvature produced by unit rest mass. The results show that, with just a few thousands of relatively bright, photometrically stable, and astrometrically well behaved single stars, among the ~10^9 objects that will be observed by GAIA, \gamma can be estimated after 1 year of continuous observations with an accuracy of ~10^{-5} at the 3\sigma level. Extrapolation to the full 5-year mission of these results based on the scaling properties of the adjustment procedure utilized suggests that the accuracy of \simeq 2x10^{-7}, at the same 3\sigma level, can be reached with \~10^6 single stars, again chosen as the most astrometrically stable among the millions available in the magnitude range V=12-13. These accuracies compare quite favorably with recent findings of scalar-tensor cosmological models, which predict for \gamma a present-time deviation, |1-\gamma|, from the General Relativity value between 10^{-5} and 10^{-7}.Comment: 7 pages, 2 figures, to be published in A&

    Tracing a relativistic Milky Way within the RAMOD measurement protocol

    Full text link
    Advancement in astronomical observations and technical instrumentation implies taking into account the general relativistic effects due the gravitational fields encountered by the light while propagating from the star to the observer. Therefore, data exploitation for Gaia-like space astrometric mission (ESA, launch 2013) requires a fully relativistic interpretation of the inverse ray-tracing problem, namely the development of a highly accurate astrometric models in accordance with the geometrical environment affecting light propagation itself and the precepts of the theory of measurement. This could open a new rendition of the stellar distances and proper motions, or even an alternative detection perspective of many subtle relativistic effects suffered by light while it is propagating and subsequently recorded in the physical measurements.Comment: Proceeding for "Relativity and Gravitation, 100 Years after Einstein in Prague" to be published by Edition Open Access, revised versio

    Generalized Galileon cosmology

    Full text link
    We study the cosmology of a generalized Galileon field Ï•\phi with five covariant Lagrangians in which Ï•\phi is replaced by general scalar functions fi(Ï•)f_{i}(\phi) (i=1,...,5). For these theories, the equations of motion remain at second-order in time derivatives. We restrict the functional forms of fi(Ï•)f_{i}(\phi) from the demand to obtain de Sitter solutions responsible for dark energy. There are two possible choices for power-law functions fi(Ï•)f_{i}(\phi), depending on whether the coupling F(Ï•)F(\phi) with the Ricci scalar RR is independent of Ï•\phi or depends on Ï•\phi. The former corresponds to the covariant Galileon theory that respects the Galilean symmetry in the Minkowski space-time. For generalized Galileon theories we derive the conditions for the avoidance of ghosts and Laplacian instabilities associated with scalar and tensor perturbations as well as the condition for the stability of de Sitter solutions. We also carry out detailed analytic and numerical study for the cosmological dynamics in those theories.Comment: 24 pages, 10 figures, version to appear in Physical Review

    A general relativistic model for the light propagation in the gravitational field of the Solar System: the dynamical case

    Full text link
    Modern astrometry is based on angular measurements at the micro-arcsecond level. At this accuracy a fully general relativistic treatment of the data reduction is required. This paper concludes a series of articles dedicated to the problem of relativistic light propagation, presenting the final microarcsecond version of a relativistic astrometric model which enable us to trace back the light path to its emitting source throughout the non-stationary gravity field of the moving bodies in the Solar System. The previous model is used as test-bed for numerical comparisons to the present one. Here we also test different versions of the computer code implementing the model at different levels of complexity to start exploring the best trade-off between numerical efficiency and the micro-arcsecond accuracy needed to be reached.Comment: 40 pages, 5 figures. Accepted for publication on The Astrophysical Journal. Manuscript prepared with AASLaTeX macros v.5.

    Catching homologies by geometric entropy

    Full text link
    A geometric entropy is defined as the Riemannian volume of the parameter space of a statistical manifold associated with a given network. As such it can be a good candidate for measuring networks complexity. Here we investigate its ability to single out topological features of networks proceeding in a bottom-up manner: first we consider small size networks by analytical methods and then large size networks by numerical techniques. Two different classes of networks, the random graphs and the scale--free networks, are investigated computing their Betti numbers and then showing the capability of geometric entropy of detecting homologies.Comment: 12 pages, 2 Figure

    Five-Dimensional f(R) Braneworld Models

    Full text link
    After incorporating the f(R) gravity into the general braneworld sum rules scope, it is shown that some particular class of warped five dimensional nonlinear braneworld models, which may be interesting for the hierarchy problem solution, still require a negative tension brane. For other classes of warp factors (suitable and not suitable for approaching the hierarchy problem) it is not necessary any negative brane tension in the compactification scheme. In this vein, it is argued that in the bulk f(R) gravity context, some types of warp factors may be useful for approaching the hierarchy problem and for evading the necessity of a negative brane tension in the compactification scheme.Comment: 10 pages, references updated, small modifications. Accepted for publication in Phys. Rev.

    Screening for congenital hypothyroidism in Maltese newborns using cord blood

    Get PDF
    Routine screening for congenital hypothyroidism (CHT) has been introduced because clinical features of CHT may not be evident before the baby is a few weeks old and treatment at this stage may already be too late. Since a newborn testing programme employing liquid cord blood for other conditions had already been developed in the University of Malta and the Department of Health, we explored the possibility of implementing newborn thyroid testing using liquid cord blood. A similar programme had been implemented successfully in Finland and Philadelphia. Between September 1989 and August 1995 around 32,000 newborns were tested. This is nearly complete ascertainment. Preliminary testing was by radioimmunoassay for TSH. The sera of those with TSH levels more than 13mU/l were further tested for free T4. If the free T4 level was below 12 pmol/l, the babies were recalled for clinical evaluation and repeat testing. Other babies were recalled for technical reasons, giving a total recall rate of 3.88%. CHT was identified in seven newborns and treatment started within 3 weeks of delivery. One baby was reported normal on screening but was suspected to have CHT on clinical grounds at 3 weeks of age, confirmed biochemically. The incidence of CHT in Malta is therefore 1 in 4500.peer-reviewe
    • …
    corecore