2,197 research outputs found

    Simulating Nonlinear Tax Rules and Nonstandard Behavior: An Application to the Tax Treatment of Charitable Contributions

    Get PDF
    This paper examines how the tax simulation method can be extended to incorporate nonlinear budget constraints and nonstandard economic behavior. We simulate the effect of extending the charitable deduction to nonitemizers and study the effect of alternative "floors". The specific simulations indicate that the econometric evidence on charitable giving implies that extending the charitable deduction to nonitemizers would raise individual giving by about 12 percent of the existing total amount or 4.5billionat1977levels.Theextensionwouldreducetaxrevenuebyslightlyless,about4.5 billion at 1977 levels. The extension would reduce tax revenue by slightly less, about 4.1 billion. A floor of $300 or 3 percent of AGI would reduce the revenue loss by 30 to 40 percent, even if there is significant bunching. The effect of the floor on increased giving depends critically on whether taxpayers' behavior is guided by conventional demand principles or by the net altruism rule. A reasonable conclusion is that a floor would reduce giving by less than the increased revenue but that the difference between them would not be very large.

    The Effective Field Theory of Dark Matter Direct Detection

    Full text link
    We extend and explore the general non-relativistic effective theory of dark matter (DM) direct detection. We describe the basic non-relativistic building blocks of operators and discuss their symmetry properties, writing down all Galilean-invariant operators up to quadratic order in momentum transfer arising from exchange of particles of spin 1 or less. Any DM particle theory can be translated into the coefficients of an effective operator and any effective operator can be simply related to most general description of the nuclear response. We find several operators which lead to novel nuclear responses. These responses differ significantly from the standard minimal WIMP cases in their relative coupling strengths to various elements, changing how the results from different experiments should be compared against each other. Response functions are evaluated for common DM targets - F, Na, Ge, I, and Xe - using standard shell model techniques. We point out that each of the nuclear responses is familiar from past studies of semi-leptonic electroweak interactions, and thus potentially testable in weak interaction studies. We provide tables of the full set of required matrix elements at finite momentum transfer for a range of common elements, making a careful and fully model-independent analysis possible. Finally, we discuss embedding non-relativistic effective theory operators into UV models of dark matter.Comment: 32+23 pages, 5 figures; v2: some typos corrected and definitions clarified; v3: some factors of 4pi correcte

    Social Security

    Get PDF
    This paper, a forthcoming chapter in the Handbook of Public Economics, reviews the theoretical and empirical issues dealing with Social Security pensions. The first part of the paper discusses pure pay-as-you-go plans. It considers the effects of introducing such a plan on the present value of consumption, the optimal level of benefits in such plans, and the emprical research on the effects of pay-as-you-go pension systems on labor supply and saving. The second part of the paper discusses the transition to investment-based systems, analyzing the effect on the present value of consumption of such a transition and considering such issues as the distributional effects and risk associated with such systems.

    A Simple Explanation for DAMA with Moderate Channeling

    Full text link
    We consider the possibility that the DAMA signal arises from channeled events in simple models where the dark matter interaction with nuclei is suppressed at small momenta. As with the standard WIMP, these models have two parameters (the dark matter mass and the size of the cross-section), without the need to introduce an additional energy threshold type of parameter. We find that they can be consistent with channeling fractions as low as about ~ 15%, so long as at least ~70% of the nuclear recoil energy for channeled events is deposited electronically. Given that there are reasons not to expect very large channeling fractions, these scenarios make the channeling explanation of DAMA much more compelling.Comment: 6 pages, 2 figure

    Density Perturbations and the Cosmological Constant from Inflationary Landscapes

    Full text link
    An anthropic understanding of the cosmological constant requires that the vacuum energy at late time scans from one patch of the universe to another. If the vacuum energy during inflation also scans, the various patches of the universe acquire exponentially differing volumes. In a generic landscape with slow-roll inflation, we find that this gives a steeply varying probability distribution for the normalization of the primordial density perturbations, resulting in an exponentially small fraction of observers measuring the COBE value of 10^-5. Inflationary landscapes should avoid this "\sigma problem", and we explore features that can allow them to do that. One possibility is that, prior to slow-roll inflation, the probability distribution for vacua is extremely sharply peaked, selecting essentially a single anthropically allowed vacuum. Such a selection could occur in theories of eternal inflation. A second possibility is that the inflationary landscape has a special property: although scanning leads to patches with volumes that differ exponentially, the value of the density perturbation does not vary under this scanning. This second case is preferred over the first, partly because a flat inflaton potential can result from anthropic selection, and partly because the anthropic selection of a small cosmological constant is more successful.Comment: 23 page

    Puzzles of Dark Matter - More Light on Dark Atoms?

    Full text link
    Positive results of dark matter searches in experiments DAMA/NaI and DAMA/LIBRA confronted with results of other groups can imply nontrivial particle physics solutions for cosmological dark matter. Stable particles with charge -2, bound with primordial helium in O-helium "atoms" (OHe), represent a specific nuclear-interacting form of dark matter. Slowed down in the terrestrial matter, OHe is elusive for direct methods of underground Dark matter detection using its nuclear recoil. However, low energy binding of OHe with sodium nuclei can lead to annual variations of energy release from OHe radiative capture in the interval of energy 2-4 keV in DAMA/NaI and DAMA/LIBRA experiments. At nuclear parameters, reproducing DAMA results, the energy release predicted for detectors with chemical content other than NaI differ in the most cases from the one in DAMA detector. Moreover there is no bound systems of OHe with light and heavy nuclei, so that there is no radiative capture of OHe in detectors with xenon or helium content. Due to dipole Coulomb barrier, transitions to more energetic levels of Na+OHe system with much higher energy release are suppressed in the correspondence with the results of DAMA experiments. The proposed explanation inevitably leads to prediction of abundance of anomalous Na, corresponding to the signal, observed by DAMA.Comment: Contribution to Proceedings of XIII Bled Workshop "What Comes beyond the Standard Model?
    corecore