285 research outputs found
Height-diameter allometry of tropical forest trees
Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were:
1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap).
2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A).
3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass.
Annual precipitation coefficient of variation (PV), dry season length (SD), and mean annual air temperature (TA) emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere. The region-environment-structure model with the lowest Akaike\u27s information criterion and lowest deviation estimated stand-level H across all plots to within amedian −2.7 to 0.9% of the true value. Some of the plot-to-plot variability in H:D relationships not accounted for by this model could be attributed to variations in soil physical conditions. Other things being equal, trees tend to be more slender in the absence of soil physical constraints, especially at smaller D. Pantropical and continental-level models provided less robust estimates of H, especially when the roles of climate and stand structure in modulating H:D allometry were not simultaneously taken into account
Effects of Added Copper and Zinc on Growth Performance and Carcass Characteristics of Finishing Pigs Fed Diets with or without Ractopamine HCl
A total of 480 pigs (PIC 327 × 1050; initially 107.4 lb) were used to determine the interactive effects of supplemental Cu, Zn, and Ractopamine HCl on finishing pig growth performance, carcass characteristics, and antimicrobial susceptibility of enteric bacteria. Dietary treatments were arranged in a 2 × 2 × 2 factorial with main effects of added copper sulfate (CuSO4; 0 vs. 125 ppm Cu), added zinc oxide (ZnO; 0 vs. 150 ppm Zn), and Ractopamine HCl (0 vs. 10 ppm during the last 28 d prior to marketing; Paylean®; Elanco Animal Health, Greenfield, IN). All finishing diets were fed in four phases in meal form and contained 11 ppm Cu and 73 ppm Zn from the trace mineral premix. The study design was structured as a randomized complete block design and replicated with two finishing groups. Pigs were randomly allotted to pens upon entry into the finisher barn. Pens of seven (group 1) or eight (group 2) pigs were balanced on initial BW and randomly allotted to 1 of the 4 mineral treatment diets with two treatment replications per weight block and four weight blocks per finishing group. At 28 d prior to marketing, pens within each block and mineral treatment were randomly assigned to receive either 0 or 10 ppm Ractopamine HCl in addition to the mineral treatment. At the conclusion of the 90-d (group 1) or 83-d (group 2) finishing period, carcass characteristics were measured. Adding Cu or Zn alone resulted in numerical improvements in overall F/G and caloric efficiencies; however, the improvements were not additive (Cu × Zn, P = 0.065, 0.068, and 0.064 for F/G and caloric efficiency on a ME and NE basis, respectively). No significant improvements were observed in overall ADG or ADFI due to added Cu and/or Zn. In contrast, Ractopamine HCl improved (P \u3c 0.001) overall ADG, F/G, and caloric efficiency, thereby increasing final BW by 3% with no change in ADFI.
Ractopamine HCl also increased (P \u3c 0.001) HCW, percentage carcass yield, and HCW F/G. Adding Zn or Cu alone to diets containing Ractopamine HCl numerically improved percentage carcass yield and HCW F/G, but this effect was not present when the mineral was added to the control diet or when the minerals were fed in combination in the Ractopamine HCl diets (Cu × Zn × Ractopamine, P = 0.011 and 0.024 respectively). Regardless of HCW, pigs fed Ractopamine HCl had decreased (P = 0.014) backfat, increased (P \u3c 0.001) loin depth, and percent fat-free lean. No effects of added minerals on these carcass traits were observed. In summary, the addition of 125 ppm Cu and/or 150 ppm Zn to diets containing Ractopamine HCl failed to improve finishing pig growth performance and carcass characteristics while 10 ppm Ractopamine HCl increased lean tissue deposition and improved feed and caloric efficiency
Tracing carbon flow through a sugar maple forest and its soil components: role of invasive earthworms
This is the author accepted manuscript. The final version is available from Springer via the DOI in this recordAims: We conducted a suite of tracer studies using the stable isotope 13C to follow and quantify the flow of carbon from leaf litter and roots into soil components including aggregates and biota with and without invasive earthworms. Methods: Ten-year-old saplings of sugar maple growing in the understory of a thinned northern hardwood forest were labeled with 13CO2. The 13C labeled leaf litter was applied to forest plots with and without invasive earthworms (Lumbricidae) and traced for three years. We also traced the label from the trees through the roots and into soil components in the labeling chambers. Labeled fine roots and stem wood were incubated in a forest and the label was quantified over six years of decomposition. Results: We were able to detect the litter tracer to 10 cm soil depth in plots without earthworms and to 20 cm with earthworms present, and earthworms promoted C incorporation into soil aggregates. The soil food web was much more enriched in the label from roots than from aboveground plant litter. Rapid fine root decay was observed (k = 0.9 yr−1), and although labelled wood was almost completely decayed, little 13C was recovered in soil (0.33%). Conclusion: The approach was successful for quantifying transport and fate of tree carbon in forest soils and could be enhanced with careful quantification of gross assimilation.National Science Foundatio
The influence of C3 and C4 vegetation on soil organic matter dynamics in contrasting semi-natural tropical ecosystems
Variations in the carbon isotopic composition of soil organic matter (SOM) in bulk and fractionated samples were used to assess the influence of C3 and C4 vegetation
on SOM dynamics in semi-natural tropical ecosystems sampled along a precipitation gradient in West Africa. Differential
patterns in SOM dynamics in C3/C4 mixed ecosystems occurred at various spatial scales. Relative changes in C=N ratios between two contrasting SOM fractions were used to evaluate potential site-scale differences in SOM dynamics between C3- and C4-dominated locations. These differences
were strongly controlled by soil texture across the precipitation gradient, with a function driven by bulk 13C and sand
content explaining 0.63 of the observed variability. The variation of 13C with soil depth indicated a greater accumulation
of C3-derived carbon with increasing precipitation, with this trend also being strongly dependant on soil characteristics.
The influence of vegetation thickening on SOM dynamics was also assessed in two adjacent, but structurally contrasting, transitional ecosystems occurring on comparable soils to minimise the confounding effects posed by climatic and edaphic factors. Radiocarbon analyses of sand-size
aggregates yielded relatively short mean residence times ( ) even in deep soil layers, while the most stable SOM fraction
associated with silt and clay exhibited shorter in the savanna woodland than in the neighbouring forest stand. These
results, together with the vertical variation observed in 13C values, strongly suggest that both ecosystems are undergoing
a rapid transition towards denser closed canopy formations.However, vegetation thickening varied in intensity at each site and exerted contrasting effects on SOM dynamics. Thisstudy shows that the interdependence between biotic and abiotic factors ultimately determine whether SOM dynamics of C3- and C4-derived vegetation are at variance in ecosystems where both vegetation types coexist. The results highlight the far-reaching implications that vegetation thickening may have for the stability of deep SOM. © 2015, Copernicus Publications
Intensification of the Amazon hydrological cycle over the last two decades
Reproduced with permission of the publisher. Online Open article. © 2013 American Geophysical UnionThe Amazon basin hosts half the planet's remaining moist tropical forests, but they may be threatened in a warming world. Nevertheless, climate model predictions vary from rapid drying to modest wetting. Here we report that the catchment of the world's largest river is experiencing a substantial wetting trend since approximately 1990. This intensification of the hydrological cycle is concentrated overwhelmingly in the wet season driving progressively greater differences in Amazon peak and minimum flows. The onset of the trend coincides with the onset of an upward trend in tropical Atlantic sea surface temperatures (SST). This positive longer-term correlation contrasts with the short-term, negative response of basin-wide precipitation to positive anomalies in tropical North Atlantic SST, which are driven by temporary shifts in the intertropical convergence zone position. We propose that the Amazon precipitation changes since 1990 are instead related to increasing atmospheric water vapor import from the warming tropical Atlantic
Representation of fire, land-use change and vegetation dynamics in the Joint UK Land Environment Simulator vn4.9 (JULES)
Disturbance of vegetation is a critical component of land cover, but is generally poorly constrained in land surface and carbon cycle models. In particular, land-use change and fire can be treated as large-scale disturbances without full representation of their underlying complexities and interactions. Here we describe developments to the land surface model JULES (Joint UK Land Environment Simulator) to represent land-use change and fire as distinct processes which interact with simulated vegetation dynamics. We couple the fire model INFERNO (INteractive Fire and Emission algoRithm for Natural envirOnments) to dynamic vegetation within JULES and use the HYDE (History Database of the Global Environment) land cover dataset to analyse the impact of land-use change on the simulation of present day vegetation. We evaluate the inclusion of land use and fire disturbance against standard benchmarks. Using the Manhattan metric, results show improved simulation of vegetation cover across all observed datasets. Overall, disturbance improves the simulation of vegetation cover by 35 % compared to vegetation continuous field (VCF) observations from MODIS and 13 % compared to the Climate Change Initiative (CCI) from the ESA. Biases in grass extent are reduced from −66 % to 13 %. Total woody cover improves by 55 % compared to VCF and 20 % compared to CCI from a reduction in forest extent in the tropics, although simulated tree cover is now too sparse in some areas. Explicitly modelling fire and land use generally decreases tree and shrub cover and increases grasses. The results show that the disturbances provide important contributions to the realistic modelling of vegetation on a global scale, although in some areas fire and land use together result in too much disturbance. This work provides a substantial contribution towards representing the full complexity and interactions between land-use change and fire that could be used in Earth system models
The influence of C₃ and C₄ vegetation on soil organic matter dynamics in contrasting semi-natural tropical ecosystems
Variations in the carbon isotopic composition of soil organic matter (SOM) in bulk and fractionated samples were used to assess the influence of C3 and C4 vegetation on SOM dynamics in semi-natural tropical ecosystems sampled along a precipitation gradient in West Africa. Differential patterns in SOM dynamics in C3/C4 mixed ecosystems occurred at various spatial scales. Relative changes in C / N ratios between two contrasting SOM fractions were used to evaluate potential site-scale differences in SOM dynamics between C3- and C4-dominated locations. These differences were strongly controlled by soil texture across the precipitation gradient, with a function driven by bulk delta 13C and sand content explaining 0.63 of the observed variability. The variation of delta 13C with soil depth indicated a greater accumulation of C3-derived carbon with increasing precipitation, with this trend being also strongly dependant on soil characteristics. The influence of vegetation thickening on SOM dynamics was also assessed in two adjacent, but structurally contrasting, transitional ecosystems occurring on comparable soils to minimise confounding effects posed by climatic and edaphic factors. Radiocarbon analyses of sand-size aggregates yielded relatively short mean residence times (T) even deep in the soil, while the most stable SOM fraction associated to silt and clay exhibited shorter T in the savanna woodland than in the neighbouring forest stand. These results together with the vertical variation observed in delta 13C values, strongly suggest that both ecosystems are undergoing a rapid transition towards denser closed canopy formations. However, vegetation thickening varied in intensity at each site and exerted contrasting effects on SOM dynamics. This study shows that the interdependence between biotic and abiotic factors ultimately determine whether SOM dynamics of C3- and C4-derived vegetation are at variance in ecosystems where both vegetation types coexist. The results highlight the far-reaching implications that vegetation thickening may have for the stability of deep SOM
Improved tree height estimation of secondary forests in the Brazilian Amazon
This paper presents a novel approach for estimating the height of individual trees in secondary forests at two study sites: Manaus (central Amazon) and Santarém (eastern Amazon) in the Brazilian Amazon region. The approach consists of adjusting tree height-diameter at breast height (H:DBH) models in each study site by ecological species groups: pioneers, early secondary, and late secondary. Overall, the DBH and corresponding height (H) of 1,178 individual trees were measured during two field campaigns: August 2014 in Manaus and September 2015 in Santarém. We tested the five most commonly used log-linear and nonlinear H:DBH models, as determined by the available literature. The hyperbolic model: H = a.DBH/(b+DBH) was found to present the best fit when evaluated using validation data. Significant differences in the fitted parameters were found between pioneer and secondary species from Manaus and Santarém by F-test, meaning that site-specific and also ecological-group H:DBH models should be used to more accurately predict H as a function of DBH. This novel approach provides specific equations to estimate height of secondary forest trees for particular sites and ecological species groups. The presented set of equations will allow better biomass and carbon stock estimates in secondary forests of the Brazilian Amazon
The influence of C₃ and C₄ vegetation on soil organic matter dynamics in contrasting semi-natural tropical ecosystems
Variations in the carbon isotopic composition of soil organic matter (SOM) in bulk and fractionated samples were used to assess the influence of C3 and C4 vegetation on SOM dynamics in semi-natural tropical ecosystems sampled along a precipitation gradient in West Africa. Differential patterns in SOM dynamics in C3/C4 mixed ecosystems occurred at various spatial scales. Relative changes in C / N ratios between two contrasting SOM fractions were used to evaluate potential site-scale differences in SOM dynamics between C3- and C4-dominated locations. These differences were strongly controlled by soil texture across the precipitation gradient, with a function driven by bulk δ13C and sand content explaining 0.63 of the observed variability. The variation of δ13C with soil depth indicated a greater accumulation of C3-derived carbon with increasing precipitation, with this trend also being strongly dependant on soil characteristics. The influence of vegetation thickening on SOM dynamics was also assessed in two adjacent, but structurally contrasting, transitional ecosystems occurring on comparable soils to minimise the confounding effects posed by climatic and edaphic factors. Radiocarbon analyses of sand-size aggregates yielded relatively short mean residence times (τ) even in deep soil layers, while the most stable SOM fraction associated with silt and clay exhibited shorter τ in the savanna woodland than in the neighbouring forest stand. These results, together with the vertical variation observed in δ13C values, strongly suggest that both ecosystems are undergoing a rapid transition towards denser closed canopy formations. However, vegetation thickening varied in intensity at each site and exerted contrasting effects on SOM dynamics. This study shows that the interdependence between biotic and abiotic factors ultimately determine whether SOM dynamics of C3- and C4-derived vegetation are at variance in ecosystems where both vegetation types coexist. The results highlight the far-reaching implications that vegetation thickening may have for the stability of deep SOM. Â © Author(s) 2015
Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edge effects
Less than half of anthropogenic carbon dioxide emissions remain in the atmosphere. While carbon balance models imply large carbon uptake in tropical forests, direct on-the-ground observations are still lacking in Southeast Asia. Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha‾¹ per year (95% CI 0.14—0.72, mean period 1988-2010) above-ground live biomass. These results closely match those from African and Amazonian plot networks, suggesting that the world's remaining intact tropical forests are now en masse out-of-equilibrium. Although both pan-tropical and long-term, the sink in remaining intact forests appears vulnerable to climate and land use changes. Across Borneo the 1997-1998 El Niño drought temporarily halted the carbon sink by increasing tree mortality, while fragmentation persistently offset the sink and turned many edge-affected forests into a carbon source to the atmosphere
- …