7 research outputs found

    Informing wetland management with waterfowl movement and sanctuary use responses to human-induced disturbance

    Get PDF
    Long-term environmental management to prevent waterfowl population declines is informed by ecology, movement behavior and habitat use patterns. Extrinsic factors, such as human-induced disturbance, can cause behavioral changes which may influence movement and resource needs, driving variation that affects management efficacy. To better understand the relationship between human-based disturbance and animal movement and habitat use, and their potential effects on management, we GPS tracked 15 dabbling ducks in California over ~4-weeks before, during and after the start of a recreational hunting season in October/November 2018. We recorded locations at 2-min intervals across three separate 24-h tracking phases: Phase 1) two weeks before the start of the hunting season (control (undisturbed) movement); Phase 2) the hunting season opening weekend; and Phase 3) a hunting weekend two weeks after opening weekend. We used GLMM models to analyze variation in movement and habitat use under hunting pressure compared with ‘normal’ observed patterns prior to commencement of hunting. We also compared responses to differing levels of disturbance related to the time of day (high - shooting/~daytime); moderate - non-lethal (~crepuscular); and low - night). During opening weekend flight (% time and distance) more than doubled during moderate and low disturbance and increased by ~50% during high disturbance compared with the pre-season weekend. Sanctuary use tripled during moderate and low disturbance and increased ~50% during high disturbance. Two weeks later flight decreased in all disturbance levels but was only less than the pre-season levels during high disturbance. In contrast, sanctuary use only decreased at night, although not to pre-season levels, while daytime doubled from ~45% to \u3e80%. Birds adjust rapidly to disturbance and our results have implications for energetics models that estimate population food requirements. Management would benefit from reassessing the juxtaposition of essential sanctuary and feeding habitats to optimize wetland management for waterfowl

    Good prospects: high-resolution telemetry data suggests novel brood site selection behaviour in waterfowl

    Get PDF
    Breeding success should increase with prior knowledge of the surrounding environment, which is dependent upon an animal\u27s ability to evaluate habitat. Prospecting for nesting locations and migratory stopover sites are well-established behaviours among bird species. We assessed whether three species of California dabbling ducks – mallards, Anas platyrhynchos, gadwall, Mareca strepera, and cinnamon teal, Spatula cyanoptera – in Suisun Marsh, California, U.S.A., a brackish marsh, prospect for suitable wetlands in the week prior to brooding. K-means cluster analyses grouped 29 mallard and gadwall hens into three groups. One group (N = 13) demonstrated evidence of brood site prospecting, with the fewest and latest prebrooding wetland visits. Of these hens, seven visited their future brood pond an average of 1.14 times and only shortly before brooding (1.29 days), obtaining current information on habitat suitability. For the remaining six hens, we did not detect a brooding wetland visit, possibly due to data limitations or because these hens acquired sufficient familiarity with the wetland habitat during nest breaks in adjacent wetlands, obviating the need to prospect the specific brood pond. The second identified group of hens (N = 11) visited the brooding wetland most frequently (on 4.55 days), further in advance (5.27 days), with the fewest unique wetland visits and the earliest brooding date (26 May). The final group of hens (N = 5) were the latest to brood (21 June) and visited the most wetlands, possibly due to less water or more broods present across the landscape. Brood ponds were always farther from the nest than the nearest ponds, indicating that habitat suitability or presence of conspecifics is more important to brood site selection. Prospecting provides hens with knowledge about current habitat conditions and allows them to ‘crowdsource’ public information regarding use of that habitat by other brooding hens. Prospecting may, therefore, benefit ducks inhabiting ephemeral habitats like those within Suisun Marsh, where brood habitat is limited and water cover changes rapidly during the breeding season

    Nocturnal incubation recess and flushing behavior by duck hens

    No full text
    Abstract Incubating birds must balance the needs of their developing embryos with their own physiological needs, and many birds accomplish this by taking periodic breaks from incubation. Mallard (Anas platyrhynchos) and gadwall (Mareca strepera) hens typically take incubation recesses in the early morning and late afternoon, but recesses can also take place at night. We examined nocturnal incubation recess behavior for mallard and gadwall hens nesting in Suisun Marsh, California, USA, using iButton temperature dataloggers and continuous video monitoring at nests. Fourteen percent of all detected incubation recesses (N = 13,708) were nocturnal and took place on 20% of nest‐days (N = 8,668). Video monitoring showed that hens covered their eggs with down feathers when they initiated a nocturnal recess themselves as they would a diurnal recess, but they left the eggs uncovered in 94% of the nocturnal recesses in which predators appeared at nests. Thus, determining whether or not eggs were left uncovered during a recess can provide strong indication whether the recess was initiated by the hen (eggs covered) or a predator (eggs uncovered). Because nest temperature decreased more rapidly when eggs were left uncovered versus covered, we were able to characterize eggs during nocturnal incubation recesses as covered or uncovered using nest temperature data. Overall, we predicted that 75% of nocturnal recesses were hen‐initiated recesses (eggs covered) whereas 25% of nocturnal recesses were predator‐initiated recesses (eggs uncovered). Of the predator‐initiated nocturnal recesses, 56% were accompanied by evidence of depredation at the nest during the subsequent nest monitoring visit. Hen‐initiated nocturnal recesses began later in the night (closer to morning) and were shorter than predator‐initiated nocturnal recesses. Our results indicate that nocturnal incubation recesses occur regularly (14% of all recesses) and, similar to diurnal recesses, most nocturnal recesses (75%) are initiated by the hen rather than an approaching predator

    GPS tracking data reveals daily spatio-temporal movement patterns of waterfowl

    No full text
    Abstract Background Spatio-temporal patterns of movement can characterize relationships between organisms and their surroundings, and address gaps in our understanding of species ecology, activity budgets, bioenergetics, and habitat resource management. Highly mobile waterfowl, which can exploit resources over large spatial extents, are excellent models to understand relationships between movements and resource usage, landscape interactions and specific habitat needs. Methods We tracked 3 species of dabbling ducks with GPS-GSM transmitters in 2015–17 to examine fine-scale movement patterns over 24 h periods (30 min interval), dividing movement pathways into temporally continuous segments and spatially contiguous patches. We quantified distances moved, area used and time allocated across the day, using linear and generalized linear mixed models. We investigated behavior through relationships between these variables. Results Movements and space-use were small, and varied by species, sex and season. Gadwall (Mareca strepera) generally moved least (FFDs: 0.5–0.7 km), but their larger foraging patches resulted from longer within-area movements. Pintails (Anas acuta) moved most, were more likely to conduct flights > 300 m, had FFDs of 0.8–1.1 km, used more segments and patches per day that they revisited more frequently, resulting in the longest daily total movements. Females and males differed only during the post-hunt season when females moved more. 23.6% of track segments were short duration (1–2 locations), approximately 1/3 more than would be expected if they occurred randomly, and were more dispersed in the landscape than longer segments. Distance moved in 30 min shortened as segment duration increased, likely reflecting phases of non-movement captured within segments. Conclusions Pacific Flyway ducks spend the majority of time using smaller foraging and resting areas than expected or previously reported, implying that foraging areas may be highly localized, and nutrients obtainable from smaller areas. Additionally, movement reductions over time demonstrates behavioral adjustments that represent divergent energetic demands, the detection of which is a key advantage of higher frequency data. Ducks likely use less energy for movement than currently predicted and management, including distribution and configuration of essential habitat, may require reconsideration. Our study illustrates how fine-scale movement data from tracking help understand and inform various other fields of research

    How Waterfowl Use of Wetland Habitats Can Inform Wetland Restoration Designs for Multi‐Species Benefits

    Get PDF
    Extensive global estuarine wetland losses have prompted intensive focus on restoration of these habitats. In California, substantial tracts of freshwater, brackish and tidal wetlands have been lost. Given the anthropogenic footprint of development and urbanization in this region, wetland restoration must rely on conversion of existing habitat types rather than adding new wetlands. These restorations can cause conflicts among stakeholders and species that win or lose depending on identified restoration priorities. Suisun Marsh on the San Francisco Bay Estuary is the largest brackish marsh on the US Pacific coast. To understand how conversion of brackish managed wetlands to tidal marsh would impact waterfowl populations and whether future tidal marsh restorations could provide suitable habitat for dabbling ducks, we examined waterfowl wetland use with a robust GPS-GSM tracking dataset (442,017 locations) from six dabbling duck species (N = 315). Managed wetlands, which comprise 47% of Suisun Marsh, were consistently and strongly selected by waterfowl over tidal marshes, with use ~98% across seasons and species. However, while use of tidal marsh (only 14% of Suisun Marsh) was generally \u3c2%, almost half our ducks (~44%) spent some time in this habitat and exhibited strong utilization of pond-like features. Ponds only comprise ~10% of this habitat but attracted 44% use (~4.5 times greater than availability). Synthesis and applications. Managed wetlands were vital to dabbling ducks, but losses from conversion of these habitats may be partially mitigated by incorporating pond features that are more attractive to waterfowl, and likely to offer multi-species benefits, into tidal marsh restoration designs. While waterfowl are presently a common taxon, previously seen calamitous population declines can be avoided through informed ecosystem-based management that promotes species richness, biodiversity and helps ‘keep common species common’
    corecore