103 research outputs found

    Stratigraphic architecture of the Upper Cretaceous and Cenozoic along the southern border of the North Sea Basin in Belgium

    Get PDF
    The Late Cretaceous and Cenozoic sedimentary record in the Campine Basin along the southern border of the North Sea Basin is analysed in terms of sequence stratigraphy. All available biostratigraphic, and in some cases, magnetostratigraphic data are used to constrain the sequence chronostratigraphy. The relative geographic extent of the strata is used as an indication of the relative sea level.Tectonic and eustatic components could be distinguished in several cases using regional geological information. Generally, sequences consist of transgressive and highstand systems tracts only and have flat, abrasiontype lower boundaries. Lowstand deposits are only identified as infill of erosional space, which generally implies marked tectonic uplift. Several eustatic and tectonic events can be correlated with similar events known elsewhere in the North Sea Basin. The time intervals spanned by the different sequences vary considerably, pointing out different control mechanisms

    Repeated Tethyan influences in the Early Campanian to Middle Late Maastrichtian successions of Folx-Les-Caves and Orp-Le-Petit

    Get PDF
    A preliminary study of the macrofossils (belemnites in particular), benthic forams and ostracodes in the Late Cretaceous chalk deposits at Folx-les-Caves and Orp-le-Petit (eastern Brabant Massif, Belgium) suggests that the sequence at Folx-les-Caves is of early Campanian (post lingua/quadrata Zone) age. The «craie blanche» and the «tuffeau jaunâtre» at Orp-le-Petit were deposited during the late Campanian and middle late Maastrichtian, respectively.The sedimentation of these chalks under shallow to very shallow subtidal conditions was temporarily interrupted by periods of emergence (conglomerate at Folx-les-Caves; hardground at Orp-le-Petit).The fossil assemblages of the early Campanian and middle late Maastrichtian comprise several distinctive Tethyan elements amongst macrofauna, forams and ostracodes which are rare in or absent from the late Campanian to early late Maastrichtian in Belgium and the SE Netherlands. Possible causes of these repeated Tethyan incursions are discussed

    Braneworld dynamics with the BraneCode

    Full text link
    We give a full nonlinear numerical treatment of time-dependent 5d braneworld geometry, which is determined self-consistently by potentials for the scalar field in the bulk and at two orbifold branes, supplemented by boundary conditions at the branes. We describe the BraneCode, an algorithm which we designed to solve the dynamical equations numerically. We applied the BraneCode to braneworld models and found several novel phenomena of the brane dynamics. Starting with static warped geometry with de Sitter branes, we found numerically that this configuration is often unstable due to a tachyonic mass of the radion during inflation. If the model admits other static configurations with lower values of de Sitter curvature, this effect causes a violent re-structuring towards them, flattening the branes, which appears as a lowering of the 4d effective cosmological constant. Braneworld dynamics can often lead to brane collisions. We found that in the presence of the bulk scalar field, the 5d geometry between colliding branes approaches a universal, homogeneous, anisotropic strong gravity Kasner-like asymptotic, irrespective of the bulk/brane potentials. The Kasner indices of the brane directions are equal to each other but different from that of the extra dimension.Comment: 38 pages, 10 figure

    Towards the Prediction of User Actions on Exercises with Hints Based on Survey Results

    Get PDF
    Proceedings of: 6th European Conference of Technology Enhanced Learning, EC-TEL 2011, Palermo, Italy, September 20-23, 2011.The actions a user performs on exercises depending on the different hinting techniques applied, can be used to adapt future exercises. In this paper, we propose a survey for users in order to know their different actions depending on different conditions. The analysis of preliminary results for some questions of the model shows that there is a correlation between some survey questions and the real student actions, but there is a case in which there is not such correlation. For the cases where that correlation exists, this correlation leads to think that some prediction of users actions based on survey results is possible.Work partially funded by the Learn3 project TIN2008-05163/TSI within the Spanish “Plan Nacional de I+D+I”, and the Madrid regional community project eMadrid S2009/TIC-1650

    Relativistic D-brane Scattering is Extremely Inelastic

    Full text link
    We study the effects of quantum production of open strings on the relativistic scattering of D-branes. We find strong corrections to the brane trajectory from copious production of highly-excited open strings, whose typical oscillator level is proportional to the square of the rapidity. In the corrected trajectory, the branes rapidly coincide and remain trapped in a configuration with enhanced symmetry. This is a purely stringy effect which makes relativistic brane collisions exceptionally inelastic. We trace this effect to velocity-dependent corrections to the open-string mass, which render open strings between relativistic D-branes surprisingly light. We observe that pair-creation of open strings could play an important role in cosmological scenarios in which branes approach each other at very high speeds.Comment: 30 pages; added references and a comment about velocity-dependent masse

    Applications of scalar attractor solutions to Cosmology

    Get PDF
    We develop a framework to study the phase space of a system consisting of a scalar field rolling down an arbitrary potential with varying slope and a background fluid, in a cosmological setting. We give analytical approximate solutions of the field evolution and discuss applications of its features to the issues of quintessence, moduli stabilisation and quintessential inflation.Comment: 9 pages, 7 figures. Accepted for publication in PR

    Challenges and Obstacles for a Bouncing Universe in Brane Models

    Get PDF
    A Brane evolving in the background of a charged AdS black-hole displays in general a bouncing behaviour with a smooth transition from a contracting to an expanding phase. We examine in detail the conditions and consequences of this behaviour in various cases. For a cosmological-constant-dominated Brane, we obtain a singularity-free, inflationary era which is shown to be compatible only with an intermediate-scale fundamental Planck mass. For a radiation-dominated Brane, the bouncing behaviour can occur only for background-charge values exceeding those allowed for non-extremal black holes. For a matter-dominated Brane, the black-hole mass affects the proper volume or the expansion rate of the Brane. We also consider the Brane evolving in an asymmetric background of two distinct charged AdS black hole spacetimes being bounded by the Brane and find that, in the case of an empty critical Brane, bouncing behaviour occurs only if the black-hole mass difference is smaller than a certain value. The effects of a Brane curvature term on the bounce at early and late times are also investigated.Comment: 23 pages, Latex file, comments and references added, version to appear in Phys. Rev.

    Phantom with Born-Infield type Lagrangian

    Full text link
    Recent analysis of the observation data indicates that the equation of state of the dark energy might be smaller than -1, which leads to the introduction of phantom models featured by its negative kinetic energy to account for the regime of equation of state w<1w<-1. In this paper, we generalize the idea to the Born-Infield type Lagrangian with negative kinetic energy term and give the condition for the potential, under which the late time attractor solution exists and also analyze a viable cosmological model in such a scheme.Comment: 13 pages, 6 figures, Reference updated, the final version will be published in Phys. Rev.

    Hierarchical Spherical Model from a Geometric Point of View

    Full text link
    A continuous version of the hierarchical spherical model at dimension d=4 is investigated. Two limit distribution of the block spin variable X^{\gamma}, normalized with exponents \gamma =d+2 and \gamma =d at and above the critical temperature, are established. These results are proven by solving certain evolution equations corresponding to the renormalization group (RG) transformation of the O(N) hierarchical spin model of block size L^{d} in the limit L to 1 and N to \infty . Starting far away from the stationary Gaussian fixed point the trajectories of these dynamical system pass through two different regimes with distinguishable crossover behavior. An interpretation of this trajectories is given by the geometric theory of functions which describe precisely the motion of the Lee--Yang zeroes. The large--NN limit of RG transformation with L^{d} fixed equal to 2, at the criticality, has recently been investigated in both weak and strong (coupling) regimes by Watanabe \cite{W}. Although our analysis deals only with N=\infty case, it complements various aspects of that work.Comment: 27 pages, 6 figures, submitted to Journ. Stat. Phy
    corecore