2 research outputs found

    Nutritional and antinutritional evaluation of complementary foods formulated from maize, pea, and anchote flours

    No full text
    This study was aimed to evaluate nutritional and antinutritional contents of complementary foods from locally available and affordable raw materials (maize, pea, and anchote) grown in Western Ethiopia. The six formulated complementary diets analyzed for their proximate, mineral, and antinutritional continents were compared with Codex standards. The mineral ratios and molar ratios of the formulated diets were also evaluated and compared with each standard values. Six formulations were generated by d-optimal mixture design. The formulated ingredient ranges 45%–61% maize, 23%–31% pea, and 14%–28% anchote. Design-Expert® 6 (Stat-Ease) was used to constrain the three components. The formulated diets ranged from 14.92% to 20.99%, 5.95% to 9.94%, 2.75% to 3.41%, and 59.10% to 66.22% of protein, fat, fiber, and utilizable carbohydrate, respectively. Mineral contents (mg/100 g) of the formulated diet ranged from 225.45 to 261.32, 11.48 to 12.61, 2.73 to 3.00, 357.92 to 391.13, 298.55 to 332.63, 252.00 to 278.01, and 44.26 to 51.56 for calcium, iron, zinc, phosphorous, potassium, sodium and magnesium, respectively. The proximate and mineral contents of the formulated diet 5 meet the Codex standards, except the fat contents of the complementary food standards. The molar ratios of the formulated diets in this study were below standard reference and which show the high mineral bioavailability in all the formulated diets. The results of the study revealed that the formulated diets contain very low antinutritional factors and high mineral bioavailability. The paper's findings show that the complementary food formulated from maize, pea, and anchote flours particularly diet 5 may be suitable to alleviate protein energy malnutrition and it can be used as a substitute for the expensive commercial complementary food

    Indigenous Ethiopian okra (Abelmoschus esculentus) mucilage: A novel ingredient with functional and antioxidant properties

    No full text
    Functional and antioxidant properties of mucilage extracted from the pods of eight okra accessions grown in Benishangul‐Gumuz region, Western Ethiopia, were evaluated. This study had shown that the mucilage contents of the pods of eight okra accessions ranged from 1.25 to 3.45 g/100 g. Functional properties of the mucilage of okra pods varied significantly (p < .05) and had respective ranges of bulk density of 0.58–0.64 g/ml; water absorption capacity of 2.45–4.60 ml/g; oil absorption capacity of 0.02–3.64 ml/g; emulsifying capacity of 42.22%–74.45%; emulsion stability of 42.22%–74.45%; foaming capacity of 50.51%–62.50%, and foam stability of 36.04%–54.35%. Total phenolic and flavonoid contents of the mucilage of the pods of okra accessions ranged from 4.66 to 49.93 mg GAE/g and 8.18–18.72 mg CE/g, respectively. The effective concentration (EC50) values (mg/ml) of mucilage of okra pods varied from 3.15 to 6.60 and 1.10 to 1.85 for DPPH scavenging and metal‐chelating activity, respectively. The study revealed that the mucilage of the pods of okra accessions was found to exhibit good functional properties and can offer a great potential in various food systems. Particularly, mucilage of the pods from OPA#5 and OPA#7 had desirable water and oil absorption capacities, whereas the mucilage of accession OPA#1 and OPA#6 had high emulsifying and foaming properties. The results also demonstrated that okra pod mucilage had potential sources of natural antioxidant
    corecore