15 research outputs found

    The Variation of Nasal Microbiota Caused by Low Levels of Gaseous Ammonia Exposure in Growing Pigs

    Get PDF
    Exposure to gaseous ammonia, even at low levels, can be harmful to pigs and human health. However, less is known about the effects of sustained exposure to gaseous ammonia on nasal microbiota colonization in growing pigs. A total of 120 DurocĂ—LandraceĂ—Yorkshire pigs were housed in 24 separate chambers and continuously exposed to gaseous ammonia at 0,5, 10, 15, 20, and 25 ppm (four groups per exposure level) for 4 weeks. Then, we used high-throughput sequencing to perform 16S rRNA gene analysis in nasal swabs samples from 72 pigs (n = 12). The results of the nasal microbiota analysis showed that an increase in ammonia concentration, especially at 20 and 25 ppm, decreased the alpha diversity and relative abundance of nasal microbiota. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Chloroflexi were the most abundant phyla. In addition, the relative abundances of 24 microbial genera significantly changed as the ammonia level increased. Four microbial genera (Pseudomonas, Lactobacillus, Prevotella, and Bacteroides) were significantly decreased at 25 ppm, while only two genera (Moraxella and Streptococcus) were increased at 25 ppm. PICRUSt analyses showed that the relative abundances of the nasal microbiota involved in cell motility, signal transduction, the nervous system, environmental adaptation, and energy and carbohydrate metabolism were significantly decreased, while genes involved in the immune system, endocrine system, circulatory system, immune system diseases and metabolism of vitamins, lipid, and amino acids were increased with increased ammonia levels. The results of in vivo tests showed that an increase in ammonia levels, especially an ammonia level of 25 ppm, caused respiratory tract injury and increase the number of Moraxella and Streptococcus species, while simultaneously decreasing respiratory immunity and growth performance, consistent with the increased presence of harmful bacteria identified by nasal microbiota analysis. Herein, this study also indicted that the threshold concentration of ammonia in pig farming is 20 ppm

    N-3 Polyunsaturated Fatty Acids and Inflammation in Obesity: Local Effect and Systemic Benefit

    No full text
    Overwhelming consensus emerges among countless evidences that obesity is characterized by a chronic low-grade inflammation in the adipose tissue (AT), which subsequently develops into a systemic inflammatory state contributing to obesity-associated diseases. N-3 Polyunsaturated fatty acids (n-3 PUFA), known as important modulators participating in inflammatory process, turn out to be an effective mitigating strategy dealing with local and systemic inflammation observed in obesity. Some of the effects of n-3 PUFA are brought about by regulation of gene expression through interacting with nuclear receptors and transcription factors; other effects are elicited by modulation of the amount and type of mediator derived from PUFAs. The metabolic effects of n-3 PUFA mainly result from their interactions with several organ systems, not limited to AT. Notably, the attenuation of inflammation in hard-hit AT, in turn, contributes to reducing circulating concentrations of proinflammatory cytokines and detrimental metabolic derivatives, which is beneficial for the function of other involved organs. The present review highlights a bridging mechanism between n-3 PUFA-mediated inflammation relief in AT and systemic benefits

    p300/CBP as a Key Nutritional Sensor for Hepatic Energy Homeostasis and Liver Fibrosis

    No full text
    The overwhelming frequency of metabolic diseases such as obesity and diabetes are closely related to liver diseases, which might share common pathogenic signaling processes. These metabolic disorders in the presence of inflammatory response seem to be triggered by and to reside in the liver, which is the central metabolic organ that plays primary roles in regulating lipid and glucose homeostasis upon alterations of metabolic conditions. Recently, abundant emerging researches suggested that p300 and CREB binding protein (CBP) are crucial regulators of energy homeostasis and liver fibrosis through both their acetyltransferase activities and transcriptional coactivators. Plenty of recent findings demonstrated the potential roles of p300/CBP in mammalian metabolic homeostasis in response to nutrients. This review is focused on the different targets and functions of p300/CBP in physiological and pathological processes, including lipogenesis, lipid export, gluconeogenesis, and liver fibrosis, also provided some nutrients as the regulator of p300/CBP for nutritional therapeutic approaches to treat liver diseases

    Glucagon-Induced Acetylation of Energy-Sensing Factors in Control of Hepatic Metabolism

    No full text
    The liver is the central organ of glycolipid metabolism, which regulates the metabolism of lipids and glucose to maintain energy homeostasis upon alterations of physiological conditions. Researchers formerly focused on the phosphorylation of glucagon in controlling liver metabolism. Noteworthily, emerging evidence has shown glucagon could additionally induce acetylation to control hepatic metabolism in response to different physiological states. Through inducing acetylation of complex metabolic networks, glucagon interacts extensively with various energy-sensing factors in shifting from glucose metabolism to lipid metabolism during prolonged fasting. In addition, glucagon-induced acetylation of different energy-sensing factors is involved in the advancement of nonalcoholic fatty liver disease (NAFLD) to liver cancer. Here, we summarize the latest findings on glucagon to control hepatic metabolism by inducing acetylation of energy-sensing factors. Finally, we summarize and discuss the potential impact of glucagon on the treatment of liver diseases

    Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Chylomicron and VLDL Synthesis and Secretion in Caco-2 Cells

    No full text
    The present research was undertaken to determine the effects of EPA (20 : 5 n-3) and DHA (22 : 6 n-3) on chylomicron and VLDL synthesis and secretion by Caco-2 cells. Cells were incubated for 12 to 36 h with 400 μM OA, EPA, and DHA; then 36 h was chosen for further study because EPA and DHA decreased de novo triglycerides synthesis in a longer incubation compared with OA  (P<0.01). Neither the uptake nor oxidation was different in response to the respective fatty acids (P>0.05). Compared with OA, intercellular and secreted nascent apolipoprotein B48 and B100 were decreased by EPA and DHA (P<0.01). Both DHA and EPA resulted in a lower secretion of chylomicron and VLDL (P<0.01). In contrast to OA, EPA and DHA were preferentially incorporated into phospholipids instead of triacylglycerols (P<0.01). These discoveries demonstrated that exposure of DHA and EPA reduced the secretion of chylomicron and VLDL partly by regulating the synthesis of TG and apoB

    Effects of garcinol supplementation on the performance, egg quality, and intestinal health of laying hens in the late laying period

    No full text
    ABSTRACT: The problem of rapid decline in egg production performance and poor egg quality is a key obstacle to improving the economic benefits of laying hens. Garcinol is an antioxidant polyphenol plant extract that has multiple physiological functions. Diets with the appropriate amount of garcinol might be able to improve the performance traits and health of late laying hens. Therefore, this study was conducted to evaluate the utilization of garcinol in late laying hens. A total of 400 healthy 59-wk-old Tingfen No. 6 hens were randomly allocated into 4 dietary treatment groups and fed a basal diet supplemented with 0, 100, 300, and 500 mg/kg garcinol for 12 wk, denoted the Con, LG, MG, and HG groups, respectively. The results showed that the addition of garcinol in the diet tended to increase the egg production rate compared with that of the control group (P = 0.080), while the average egg weight was significantly lower (P < 0.05) during the whole period of the experiment. The results showed that MG group hens had higher egg quality and strengthened antioxidant capacity in their serum (P < 0.05). Moreover, the laying hens in the MG group had significantly decreased crypt depth (CD) and increased villus height (VH) in the jejunum and ileum (P < 0.05), as well as an increased ratio of VH to CD (P < 0.05) and increased expression levels of Occludin (P < 0.05) and Claudin-2 (P < 0.05) in the jejunum to improve intestinal barrier function. In addition, dietary supplementation with garcinol influenced the cecal microbiota of laying hens, which was characterized by changes in the microbial community composition, including increased abundances of Firmicutes, Romboutsia, and Ruminococcus torques. In conclusion, dietary 300 mg/kg garcinol supplementation could increase the egg production and egg quality of late laying hens, which may be attributed to the antioxidant effects of garcinol and the improvement of intestinal morphology and epithelial barrier function as well as the regulation of mucosal immune status by altering microbial composition

    Responses of Growth Performance and Proinflammatory Cytokines Expression to Fish Oil Supplementation in Lactation Sows’ and/or Weaned Piglets’ Diets

    Get PDF
    The study was conducted to investigate whether dietary fish oil could influence growth of piglets via regulating the expression of proinflammatory cytokines. A split-plot experimental design was used with sow diet effect in the main plots and differing piglet diet effect in the subplot. The results showed that suckling piglets from fish oil fed dams grew rapidly (P<0.05) than control. It was also observed that these piglets had higher ADG, feed intake, and final body weight (P<0.05) during postweaning than those piglets from lard fed dams. Furthermore, there was a significant decrease (P<0.01) in the expression of interleukin 6 and tumor necrosis factor-α in longissimus dorsi muscle. In contrast, there was a tendency (P<0.10) towards lower ADG and higher feed : gain in weaned piglets receiving fish oil compared with those receiving lard. Meanwhile, splenic proinflammatory cytokines expression was increased (P<0.01) in piglets receiving fish oil during postweaning period. The results suggested that 7% fish oil addition to sows' diets alleviated inflammatory response via decreasing the proinflammatory cytokines expression in skeletal muscle and accelerated piglet growth. However, 7% fish oil addition to weaned piglets' diets might decrease piglet growth via increasing splenic proinflammatory cytokines expression

    L-leucine stimulates glutamate dehydrogenase activity and glutamate synthesis by regulating mTORC1/SIRT4 pathway in pig liver

    No full text
    The liver is the most essential organ for the metabolism of ammonia, in where most of ammonia is removed by urea and glutamine synthesis. Regulated by leucine, glutamate dehydrogenase (GDH) catalyzes the reversible inter-conversion of glutamate to ammonia. To determine the mechanism of leucine regulating GDH, pigs weighing 20 ± 1 kg were infused for 80 min with ammonium chloride or alanine in the presence or absence of leucine. Primary pig hepatocytes were incubated with or without leucine. In the in vivo experiments with either ammonium or alanine as the nitrogen source, addition of leucine significantly inhibited ureagenesis and promoted the production of glutamate and glutamine in the perfused pig liver (P  0.05), while mTORC1 signaling was activated. Leucine exerted no significant changes in both GDH activity and SIRT4 gene expression in rapamycin treated hepatocytes (P > 0.05). In conclusion, L-leucine increases GDH activity and stimulates glutamate synthesis from different nitrogen sources by regulating mTORC1/SIRT4 pathway in the liver of pigs. Keywords: Glutamate dehydrogenase activity, Glutamate synthesis, L-leucine, mTORC1/SIRT4 pathway, Pig live

    Garcinol Promotes the Formation of Slow-Twitch Muscle Fibers by Inhibiting p300-Dependent Acetylation of PGC-1α

    No full text
    The conversion of skeletal muscle fiber from fast-twitch to slow-twitch is crucial for sustained contractile and stretchable events, energy homeostasis, and anti-fatigue ability. The purpose of our study was to explore the mechanism and effects of garcinol on the regulation of skeletal muscle fiber type transformation. Forty 21-day-old male C57/BL6J mice (n = 10/diet) were fed a control diet or a control diet plus garcinol at 100 mg/kg (Low Gar), 300 mg/kg (Mid Gar), or 500 mg/kg (High Gar) for 12 weeks. The tibialis anterior (TA) and soleus muscles were collected for protein and immunoprecipitation analyses. Dietary garcinol significantly downregulated (p p p p p p p p p p < 0.05). Garcinol promotes the transformation of skeletal muscle fibers from the fast-glycolytic type to the slow-oxidative type through the p300/PGC-1α signaling pathway in C2C12 myotubes
    corecore