357 research outputs found

    A New Model-Free Method for MIMO Systems and Discussion on Model-Free or Model-Based

    Full text link
    Current model-free adaptive control (MFAC) can hardly deal with the time delay problem in multiple-input multiple-output (MIMO) systems. To solve this problem, a novel model-free adaptive predictive control (MFAPC) method is proposed. Compared to the current MFAC, i) the proposed method is based on a kind of prediction model which derives from the equivalent-dynamic-linearization model (EDLM); ii) the previous assumptions are relaxed and the application range of MFAPC are extended. The leading coefficient of the control input vector in system description is no more restricted to the diagonally dominant square matrix and the permissible ranges of pseudo orders Ly and Lu are extended; iii) the performance analysis and the issue of how to choose the matrix {\lambda} are completed by an easy manner of analyzing the function of the closed-loop poles, however, both problems may not be realized by the previous contraction mapping method

    A New Model-Free Method Combined with Neural Networks for MIMO Systems

    Full text link
    In this brief, a model-free adaptive predictive control (MFAPC) is proposed. It outperforms the current model-free adaptive control (MFAC) for not only solving the time delay problem in multiple-input multiple-output (MIMO) systems but also relaxing the current rigorous assumptions for sake of a wider applicable range. The most attractive merit of the proposed controller is that the controller design, performance analysis and applications are easy for engineers to realize. Furthermore, the problem of how to choose the matrix {\lambda} is finished by analyzing the function of the closed-loop poles rather than the previous contraction mapping method. Additionally, in view of the nonlinear modeling capability and adaptability of neural networks (NNs), we combine these two classes of algorithms together. The feasibility and several interesting results of the proposed method are shown in simulations

    Performance Analysis of Model-Free Adaptive Control

    Full text link
    We analyzed model-free adaptive control (MFAC) law through closed-loop function to widen its application range.Comment: arXiv admin note: text overlap with arXiv:2008.1016

    Discussion on a Class of Model-Free Adaptive Control for Multivariable Systems

    Full text link
    The model-free adaptive control (MFAC) law is a promising method in applications. We analyzed model-free adaptive control (MFAC) law through closed-loop function to widen its application range

    Discussions on Inverse Kinematics based on Levenberg-Marquardt Method and Model-Free Adaptive (Predictive) Control

    Full text link
    In this brief, the current robust numerical solution to the inverse kinematics based on Levenberg-Marquardt (LM) method is reanalyzed through control theory instead of numerical method. Compared to current works, the robustness of computation and convergence performance of computational error are analyzed much more clearly by analyzing the control performance of the corrected model free adaptive control (MFAC). Then mainly motivated by minimizing the predictive tracking error, this study suggests a new method of model free adaptive predictive control (MFAPC) to solve the inverse kinematics problem. At last, we apply the MFAPC as a controller for the robotic kinematic control problem in simulation. It not only shows an excellent control performance but also efficiently acquires the solution to inverse kinematic

    Predictive Control based on Equivalent Dynamic Linearization Model

    Full text link
    Based on equivalent-dynamic-linearization model (EDLM), we propose a kind of model predictive control (MPC) for single-input and single-output (SISO) nonlinear or linear systems. After compensating the EDLM with disturbance for multiple-input and multiple-output nonlinear or linear systems, the MPC compensated with disturbance is proposed to address the disturbance rejection problem. The system performance analysis results are much clear compared with the system stability analyses on MPC in current works. And this may help the engineers understand how to design, analyze and apply the controller in practical
    • …
    corecore