71 research outputs found

    Calculation of NH3 Emissions, Evaluation of Backward Lagrangian Stochastic Dispersion Model and Aerodynamic Gradient Method

    Get PDF
    Two campaigns measuring ammonia (NH3) emissions with different measurement techniques were performed on a large grass field (26 ha) after the application of liquid animal manure. The aim was to compare emissions from a confined area estimated from either (i) concentration measurements, both point and line-integrated measurements, combined with backward Lagrangian stochastic (bLS) dispersion modeling or by (ii) estimation of the vertical flux by the aerodynamic gradient method (AGM) with and without footprint correction approximated by the bLS model estimates of the flux footprint. The objective of the comparison is to establish the best practice to derive NH3 emissions from a large field. NH3 emissions derived from bLS agreed well when comparing point and line-integrated measurements. Simple point measurements combined with bLS yield good emission estimations for the confined area. Without footprint correction, the AGM underestimates the emissions by up to 9% compared to the footprint-corrected AGM results. The sensitivity of the measurement methods makes it possible to quantify NH3 emissions with diurnal patterns even five days after a field application of liquid animal manure under wet conditions. The bLS model proves to be a strong tool to determine the NH3 emissions from point concentration measurements inside a large field after a slurry application

    The Aerodynamic Gradient Method: Implications of Non-Simultaneous Measurements at Alternating Heights

    Get PDF
    Flux measurements with the aerodynamic gradient method (AGM) performed with a single analyzer measuring non-simultaneously at two heights have routinely been conducted. This study investigates the effect of this practice with calculations of single analyzer derived fluxes compared to fluxes derived from simultaneous concentration measurements at two heights for NH3. The results show a mean relative difference of less than 7% for the half-hour averaging intervals, whereas the relative difference in the cumulative loss of total ammoniacal nitrogen (TAN) is less than 4%. Scatter plots and linear regression show linear behavior with slope and intercept close to one and zero, respectively. The regression coefficients were between 0.913 and 0.966 for the simulations, but with large deviations for the single half-hour measurement interval. Changes in the starting height and averaging duration at each height for the single analyzer calculations yield small differences, but the effect is minimal compared to the general uncertainty of flux determination with AGM

    Menbrane inlet mass spectrometry (MIMS) as a tool for evaluating biological air filters in agriculture

    No full text
    [Abstract] Membrane inlet mass spectrometry (MIMS) is presented as a new tool for monitoring the removal efficiency of biofilters with respect to odour compounds. The MIMS technique is based on the separation of volatile chemicals and gases from an air stream by a thin silicone membrane adjacent to the ion source of a standard quadropole mass spectrometer. The vacuum conditions of the MS forces the separated compounds to diffuse through the membrane and evaporate in the ion source. The compounds are detected by MS by means of specific molecular ions or fragment ions. It is possible to monitor a number of individual compounds or compound groups contributing to the odour nuisance of livestock facilities. 4-Methylphenol (p-cresol), skatol, indol, 4-ethylphenol, phenol and dimethyltrisulfide give rise to specific signals corresponding to molecular fragments. A variety of carboxylic acids can be detected by signals corresponding to three subgroups of this compound group. The sum of reduced organic sulphur compounds (ROS) are measured by a common signal. The contribution of individual sulphur compounds (mainly methanethiol and dimethyl sulphide) to ROS can be estimated from supplementary MS fragments. MIMS is not suitable for measuring ammonia and hydrogen sulphide for which other methods must be applied. MIMS is suitable for continuous monitoring on-site and has been applied for evaluation of a number of biofilters in the Danish agricultural sector, primarily for treating ventilated air from pig barns

    Recovery of Odorants from an Olfactometer Measured by Proton-Transfer-Reaction Mass Spectrometry

    No full text
    The aim of the present study was to examine the recovery of odorants during the dilution in an olfactometer designed according to the European standard for dynamic olfactometry. Nine odorants in the ppmv-range were examined including hydrogen sulfide, methanethiol, dimethyl sulfide, acetic acid, propanoic acid, butanoic acid, trimethylamine, 3-methylphenol and n-butanol. Each odorant was diluted in six dilution steps in descending order from 4,096 to 128 times dilutions. The final recovery of dimethyl sulfide and n-butanol after a 60-second pulse was only slightly affected by the dilution, whereas the recoveries of the other odorants were significantly affected by the dilution. The final recoveries of carboxylic acids, trimethylamine and 3-methylphenol were affected by the pulse duration and the signals did not reach stable levels within the 60-second pulse, while sulfur compounds and n-butanol reach a stable signal within a few seconds. In conclusion, the dilution of odorants in an olfactometer has a high impact on the recovery of odorants and when olfactometry is used to estimate the odor concentration, the recoveries have to be taken into consideration for correct measurements

    Key Odorants from Pig Production Based on Improved Measurements of Odor Threshold Values Combining Olfactometry and Proton-Transfer-Reaction Mass Spectrometry (PTR-MS)

    No full text
    Analytical measurements of odorants in combination with odor threshold values is an alternative to sensory measurements that can be used to evaluate abatement technologies for pig production facilities. The purpose of the present study was to estimate odor threshold values for key odorants found in pig house air. A new method was applied where an olfactometer was used to dilute the sample air and the concentrations of odorants presented to the panelists at the dilutions steps were measured by proton-transfer-reaction mass spectrometry (PTR-MS). The results demonstrate that the odor threshold values of acetic acid, butanoic acid, and 4-methylphenol are considerably lower than reported previously, whereas the values of hydrogen sulfide, methanethiol and dimethylsulfide were comparable. Consequently, acetic acid, butanoic acid, and 4-methyl-phenol will have a larger influence on odor from pig production facilities than previously assumed. The results highlight the necessity for directly measuring exposure concentrations when determining odor threshold values

    Recovery of Odorants from an Olfactometer Measured by Proton-Transfer-Reaction Mass Spectrometry

    Get PDF
    The aim of the present study was to examine the recovery of odorants during the dilution in an olfactometer designed according to the European standard for dynamic olfactometry. Nine odorants in the ppmv-range were examined including hydrogen sulfide, methanethiol, dimethyl sulfide, acetic acid, propanoic acid, butanoic acid, trimethylamine, 3-methylphenol and n-butanol. Each odorant was diluted in six dilution steps in descending order from 4,096 to 128 times dilutions. The final recovery of dimethyl sulfide and n-butanol after a 60-second pulse was only slightly affected by the dilution, whereas the recoveries of the other odorants were significantly affected by the dilution. The final recoveries of carboxylic acids, trimethylamine and 3-methylphenol were affected by the pulse duration and the signals did not reach stable levels within the 60-second pulse, while sulfur compounds and n-butanol reach a stable signal within a few seconds. In conclusion, the dilution of odorants in an olfactometer has a high impact on the recovery of odorants and when olfactometry is used to estimate the odor concentration, the recoveries have to be taken into consideration for correct measurements

    Application of PTR-MS for Measuring Odorant Emissions from Soil Application of Manure Slurry

    No full text
    Odorous volatile organic compounds (VOC) and hydrogen sulfide (H2S) are emitted together with ammonia (NH3) from manure slurry applied as a fertilizer, but little is known about the composition and temporal variation of the emissions. In this work, a laboratory method based on dynamic flux chambers packed with soil has been used to measure emissions from untreated pig slurry and slurry treated by solid-liquid separation and ozonation. Proton-transfer-reaction mass spectrometry (PTR-MS) was used to provide time resolved data for a range of VOC, NH3 and H2S. VOC included organic sulfur compounds, carboxylic acids, phenols, indoles, alcohols, ketones and aldehydes. H2S emission was remarkably observed to take place only in the initial minutes after slurry application, which is explained by its high partitioning into the air phase. Long-term odor effects are therefore assessed to be mainly due to other volatile compounds with low odor threshold values, such as 4-methylphenol. PTR-MS signal assignment was verified by comparison to a photo-acoustic analyzer (NH3) and to thermal desorption GC/MS (VOC). Due to initial rapid changes in odorant emissions and low concentrations of odorants, PTR-MS is assessed to be a very useful method for assessing odor following field application of slurry. The effects of treatments on odorant emissions are discussed
    • …
    corecore