252 research outputs found
Explanatory factors for first and second-generation non-western womenâs inadequate prenatal care utilisation: a prospective cohort study
Background
Little research into non-western womenâs prenatal care utilisation in industrialised western countries has taken generational differences into account. In this study we examined non-western womenâs prenatal care utilisation and its explanatory factors according to generational status.
Methods
Data from 3300 women participating in a prospective cohort of primary midwifery care clients (i.e. women with no complications or no increased risk for complications during pregnancy, childbirth and the puerperium who receive maternity care by autonomous midwives) in the Netherlands (the DELIVER study) was used. Gestational age at entry and the total number of prenatal visits were aggregated into an index. The extent to which potential factors explained non-western womenâs prenatal care utilisation was assessed by means of blockwise logistic regression analyses and percentage changes in odds ratios.
Results
The unadjusted odds of first and second-generation non-western women making inadequate use of prenatal care were 3.26 and 1.96 times greater than for native Dutch women. For the first generation, sociocultural factors explained 43% of inadequate prenatal care utilisation, socioeconomic factors explained 33% and demographic and pregnancy factors explained 29%. For the second generation, sociocultural factors explained 66% of inadequate prenatal care utilisation.
Conclusion
Irrespective of generation, strategies to improve utilisation should focus on those with the following sociocultural characteristics (not speaking Dutch at home, no partner or a first-generation non-Dutch partner). For the first generation, strategies should also focus on those with the following demographic, pregnancy and socioeconomic characteristics (aged â€19 or â„36, unplanned pregnancies, poor obstetric histories (extra-uterine pregnancy, molar pregnancy or abortion), a low educational level, below average net household income and no supplementary insurance.(aut. ref.
Late cardiac events after childhood cancer: Methodological aspects of the pan-european study pancaresurfup
Background and Aim Childhood cancer survivors are at high risk of long-Termadverse effects of cancer and its treatment, including cardiac events. The pan-European PanCareSurFup study determined the incidence and risk factors for cardiac events among childhood cancer survivors. The aim of this article is to describe the methodology of the cardiac cohort and nested case-control study within PanCareSurFup. Methods Eight data providers in Europe participating in PanCareSurFup identified and validated symptomatic cardiac events in their cohorts of childhood cancer survivors. Data onsymptomatic heart failure, ischemia, pericarditis, valvular disease and arrhythmia were collected and graded according to the Criteria for Adverse Events. Detailed treatment data, data on potential confounders, lifestyle related risk factors and general health problems were collected. Results The PanCareSurFup cardiac cohort consisted of 59,915 5-year childhood cancer survivors with malignancies diagnosed between 1940 and 2009 and classified according to the International Classification of Childhood Cancer 3. Different strategies were used to identify cardiac events such as record linkage to population/ hospital or regional based databases, and patient-And general practitioner-based questionnaires. Conclusion The cardiac study of the European collaborative research project PanCareSurFup will provide the largest cohort of 5-year childhood cancer survivors with systematically ascertained and validated data on symptomatic cardiac events. The result of this study can provide information to minimize the burden of cardiac events in childhood cancer survivors by tailoring the follow-up of childhood cancer survivors at high risk of cardiac adverse events, transferring this knowledge into evidence-based clinical practice guidelines and providing a platformfor future research studies in childhood cancer patients. © 2016 Feijen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Detection of extended gamma-ray emission around the Geminga pulsar with H.E.S.S
Geminga is an enigmatic radio-quiet gamma-ray pulsar located at a mere 250 pc
distance from Earth. Extended very-high-energy gamma-ray emission around the
pulsar was discovered by Milagro and later confirmed by HAWC, which are both
water Cherenkov detector-based experiments. However, evidence for the Geminga
pulsar wind nebula in gamma rays has long evaded detection by imaging
atmospheric Cherenkov telescopes (IACTs) despite targeted observations. The
detection of gamma-ray emission on angular scales > 2 deg poses a considerable
challenge for the background estimation in IACT data analysis. With recent
developments in understanding the complementary background estimation
techniques of water Cherenkov and atmospheric Cherenkov instruments, the
H.E.S.S. IACT array can now confirm the detection of highly extended gamma-ray
emission around the Geminga pulsar with a radius of at least 3 deg in the
energy range 0.5-40 TeV. We find no indications for statistically significant
asymmetries or energy-dependent morphology. A flux normalisation of
cmsTeV at 1 TeV is obtained
within a 1 deg radius region around the pulsar. To investigate the particle
transport within the halo of energetic leptons around the pulsar, we fitted an
electron diffusion model to the data. The normalisation of the diffusion
coefficient obtained of
cms, at an electron energy of 100 TeV, is compatible with values
previously reported for the pulsar halo around Geminga, which is considerably
below the Galactic average.Comment: 16 pages, 15 figures, 7 tables. Accepted for publication in Astronomy
& Astrophysic
The cancer patient and cardiology
Advances in cancer treatments have improved clinical outcomes, leading to an increasing population of cancer survivors. However, this success is associated with high rates of short- and long-term cardiovascular (CV) toxicities. The number and variety of cancer drugs and CV toxicity types make long-term care a complex undertaking. This requires a multidisciplinary approach that includes expertise in oncology, cardiology and other related specialties, and has led to the development of the cardio-oncology subspecialty. This paper aims to provide an overview of the main adverse events, risk assessment and risk mitigation strategies, early diagnosis, medical and complementary strategies for prevention and management, and long-term follow-up strategies for patients at risk of cancer therapy-related cardiotoxicities. Research to better define strategies for early identification, follow-up and management is highly necessary. Although the academic cardio-oncology community may be the best vehicle to foster awareness and research in this field, additional stakeholders (industry, government agencies and patient organizations) must be involved to facilitate cross-discipline interactions and help in the design and funding of cardio-oncology trials. The overarching goals of cardio-oncology are to assist clinicians in providing optimal care for patients with cancer and cancer survivors, to provide insight into future areas of research and to search for collaborations with industry, funding bodies and patient advocates. However, many unmet needs remain. This document is the product of brainstorming presentations and active discussions held at the Cardiovascular Round Table workshop organized in January 2020 by the European Society of Cardiology.</p
HESS J1809193: a halo of escaped electrons around a pulsar wind nebula?
Context. HESS J1809193 is an unassociated very-high-energy -ray
source located on the Galactic plane. While it has been connected to the nebula
of the energetic pulsar PSR J18091917, supernova remnants and molecular
clouds present in the vicinity also constitute possible associations. Recently,
the detection of -ray emission up to energies of 100 TeV with the
HAWC observatory has led to renewed interest in HESS J1809193.
Aims. We aim to understand the origin of the -ray emission of HESS
J1809193.
Methods. We analysed 93.2 h of data taken on HESS J1809193 above 0.27 TeV
with the High Energy Stereoscopic System (H.E.S.S.), using a multi-component,
three-dimensional likelihood analysis. In addition, we provide a new analysis
of 12.5 yr of Fermi-LAT data above 1 GeV within the region of HESS J1809193.
The obtained results are interpreted in a time-dependent modelling framework.
Results. For the first time, we were able to resolve the emission detected
with H.E.S.S. into two components: an extended component that exhibits a
spectral cut-off at 13 TeV, and a compact component that is located close
to PSR J18091917 and shows no clear spectral cut-off. The Fermi-LAT analysis
also revealed extended -ray emission, on scales similar to that of the
extended H.E.S.S. component.
Conclusions. Our modelling indicates that based on its spectrum and spatial
extent, the extended H.E.S.S. component is likely caused by inverse Compton
emission from old electrons that form a halo around the pulsar wind nebula. The
compact component could be connected to either the pulsar wind nebula or the
supernova remnant and molecular clouds. Due to its comparatively steep
spectrum, modelling the Fermi-LAT emission together with the H.E.S.S.
components is not straightforward. (abridged)Comment: 14 pages, 10 figures. Accepted for publication in A&A. Corresponding
authors: Vikas Joshi, Lars Mohrman
Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project
In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory
A deep spectromorphological study of the -ray emission surrounding the young massive stellar cluster Westerlund 1
Young massive stellar clusters are extreme environments and potentially
provide the means for efficient particle acceleration. Indeed, they are
increasingly considered as being responsible for a significant fraction of
cosmic rays (CRs) accelerated within the Milky Way. Westerlund 1, the most
massive known young stellar cluster in our Galaxy is a prime candidate for
studying this hypothesis. While the very-high-energy -ray source HESS
J1646-458 has been detected in the vicinity of Westerlund 1 in the past, its
association could not be firmly identified. We aim to identify the physical
processes responsible for the -ray emission around Westerlund 1 and
thus to better understand the role of massive stellar clusters in the
acceleration of Galactic CRs. Using 164 hours of data recorded with the High
Energy Stereoscopic System (H.E.S.S.), we carried out a deep
spectromorphological study of the -ray emission of HESS J1646-458. We
furthermore employed H I and CO observations of the region to infer the
presence of gas that could serve as target material for interactions of
accelerated CRs. We detected large-scale ( diameter) -ray
emission with a complex morphology, exhibiting a shell-like structure and
showing no significant variation with -ray energy. The combined energy
spectrum of the emission extends to several tens of TeV, and is uniform across
the entire source region. We did not find a clear correlation of the
-ray emission with gas clouds as identified through H I and CO
observations. We conclude that, of the known objects within the region, only
Westerlund 1 can explain the bulk of the -ray emission. Several CR
acceleration sites and mechanisms are conceivable, and discussed in detail.
(abridged)Comment: 15 pages, 9 figures. Corresponding authors: L. Mohrmann, S. Ohm, R.
Rauth, A. Specoviu
Evolution and networks in ancient and widespread symbioses between Mucoromycotina and liverworts
Like the majority of land plants, liverworts regularly form intimate symbioses with arbuscular mycorrhizal fungi (Glomeromycotina). Recent phylogenetic and physiological studies report that they also form intimate symbioses with Mucoromycotina fungi and that some of these, like those involving Glomeromycotina, represent nutritional mutualisms. To compare these symbioses, we carried out a global analysis of Mucoromycotina fungi in liverworts and other plants using species delimitation, ancestral reconstruction, and network analyses. We found that Mucoromycotina are more common and diverse symbionts of liverworts than previously thought, globally distributed, ancestral, and often co-occur with Glomeromycotina within plants. However, our results also suggest that the associations formed by Mucoromycotina fungi are fundamentally different because, unlike Glomeromycotina, they may have evolved multiple times and their symbiotic networks are un-nested (i.e., not forming nested subsets of species). We infer that the global Mucoromycotina symbiosis is evolutionarily and ecologically distinctive
Combined dark matter searches towards dwarf spheroidal galaxies with Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS
Cosmological and astrophysical observations suggest that 85% of the total matter of the Universe is made of Dark Matter (DM). However, its nature remains one of the most challenging and fundamental open questions of particle physics. Assuming particle DM, this exotic form of matter cannot consist of Standard Model (SM) particles. Many models have been developed to attempt unraveling the nature of DM such as Weakly Interacting Massive Particles (WIMPs), the most favored particle candidates. WIMP annihilations and decay could produce SM particles which in turn hadronize and decay to give SM secondaries such as high energy \u1d6fe rays. In the framework of indirect DM search, observations of promising targets are used to search for signatures of DM annihilation. Among these, the dwarf spheroidal galaxies (dSphs) are commonly favored owing to their expected high DM content and negligible astrophysical background. In this work, we present the very first combination of 20 dSph observations, performed by the Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS collaborations in order to maximize the sensitivity of DM searches and improve the current results. We use a joint maximum likelihood approach combining each experimentâs individual analysis to derive more constraining upper limits on the WIMP DM self-annihilation cross-section as a function of DM particle mass. We present new DM constraints over the widest mass range ever reported, extending from 5 GeV to 100 TeV thanks to the combination of these five different \u1d6fe-ray instruments
Detection of extended TeV emission around the Geminga pulsar with H.E.S.S.
Highly extended gamma-ray emission around the Geminga pulsar was discovered by Milagro and verified by HAWC. Despite many observations with Imaging Atmospheric Cherenkov Telescopes (IACTs), detection of gamma-ray emission on angular scales exceeding the IACT field-of-view has proven challenging. Recent developments in analysis techniques have enabled the detection of significant emission around Geminga in archival data with H.E.S.S.. In 2019, further data on the Geminga region were obtained with an adapted observation strategy. Following the announcement of the detection of significant TeV emission around Geminga in archival data, in this contribution we present the detection in an independent dataset. New analysis results will be presented, and emphasis given to the technical challenges involved in observations of highly extended gamma-ray emission with IACTs
- âŠ