270 research outputs found
Unconventional fermionic pairing states in a monochromatically tilted optical lattice
We study the one-dimensional attractive fermionic Hubbard model under the influence of periodic driving with
the time-dependent density matrix renormalization group method. We show that the system can be driven into
an unconventional pairing state characterized by a condensate made of Cooper pairs with a finite center-of-mass
momentum similar to a Fulde-Ferrell state. We obtain results both in the laboratory and the rotating reference
frames demonstrating that the momentum of the condensate can be finely tuned by changing the ratio between
the amplitude and the frequency of the driving. In particular, by quenching this ratio to the value corresponding to
suppression of the tunneling and the Coulomb interaction strength to zero, we are able to “freeze” the condensate.
We finally study the effects of different initial conditions and compare our numerical results to those obtained from
a time-independent Floquet theory in the large frequency regime. Our work offers the possibility of engineering
and controlling unconventional pairing states in fermionic condensates.This work was conducted at the Center for Nanophase Materials Sciences, sponsored by the Scientific User Facilities Division (SUFD), Basic Energy Sciences (BES), U.S. Department of Energy (DOE), under contract with UT-Battelle. A.N. acknowledges support by the Center for Nanophase Materials Sciences and by the Early Career Research program, SUFD, BES, DOE. A.E.F. acknowledges the DOE, Office of Basic Energy Sciences, for support under Grant No. DE-SC0014407. A.P. was supported by NSF DMR-1506340, ARO W911NF1410540, and AFOSR FA9550-16-1-0334. (Scientific User Facilities Division (SUFD); Basic Energy Sciences (BES); U.S. Department of Energy (DOE); UT-Battelle; Center for Nanophase Materials Sciences; Early Career Research program; SUFD; BES; DOE; DE-SC0014407 - DOE, Office of Basic Energy Sciences; NSF DMR-1506340; ARO W911NF1410540; AFOSR FA9550-16-1-0334)Published versio
Reducing entanglement with symmetries: application to persistent currents in impurity problems
We show how canonical transformations can map problems with impurities
coupled to non-interacting rings onto a similar problem with open boundary
conditions. The consequent reduction of entanglement, and the fact the density
matrix renormalization group (DMRG) is optimally suited for open boundary
conditions, increases the efficiency of the method exponentially, making it an
unprecedented tool to study persistent currents. We demonstrate its application
to the case of the one-channel and two-channel Kondo problems, finding
interesting connections between the two
Real time evolution using the density matrix renormalization group
We describe an extension to the density matrix renormalization group method
incorporating real time evolution into the algorithm. Its application to
transport problems in systems out of equilibrium and frequency dependent
correlation functions is discussed and illustrated in several examples. We
simulate a scattering process in a spin chain which generates a spatially
non-local entangled wavefunction.Comment: 4 pages, 4 eps figures, some minor corrections in text and Eq.(3
Density Matrix Renormalization Group Study of Incompressible Fractional Quantum Hall States
We develop the Density Matrix Renormalization Group (DMRG) technique for
numerically studying incompressible fractional quantum Hall (FQH) states on the
sphere. We calculate accurate estimates for ground state energies and
excitationgaps at FQH filling fractions \nu=1/3 and \nu=5/2 for systems that
are almost twice as large as the largest ever studied by exact diagonalization.
We establish, by carefully comparing with existing numerical results on smaller
systems, that DMRG is a highly effective numerical tool for studying
incompressible FQH states.Comment: 5 pages, 4 figure
Exotic paired phases in ladders with spin-dependent hopping
Fermions in two-dimensions (2D) when subject to anisotropic spin-dependent
hopping can potentially give rise to unusual paired states in {\it unpolarized}
mixtures that can behave as non-Fermi liquids. One possibility is a fully
paired state with a gap for fermion excitations in which the Cooper pairs
remain uncondensed. Such a "Cooper-pair Bose-metal" phase would be expected to
have a singular Bose-surface in momentum space. As demonstrated in the context
of 2D bosons hopping with a frustrating ring-exchange interaction, an analogous
Bose-metal phase has a set of quasi-1D descendent states when put on a ladder
geometry. Here we present a density matrix renormalization group (DMRG) study
of the attractive Hubbard model with spin-dependent hopping on a two-leg ladder
geometry. In our setup, one spin species moves preferentially along the leg
direction, while the other does so along the rung direction. We find compelling
evidence for the existence of a novel Cooper-pair Bose-metal phase in a region
of the phase diagram at intermediate coupling. We further explore the phase
diagram of this model as a function of hopping anisotropy, density, and
interaction strength, finding a conventional superfluid phase, as well as a
phase of paired Cooper pairs with d-wave symmetry, similar to the one found in
models of hard-core bosons with ring-exchange. We argue that simulating this
model with cold Fermi gases on spin dependent optical lattices is a promising
direction for realizing exotic quantum states.Comment: 10 pages, 12 figure
- …
