270 research outputs found

    Unconventional fermionic pairing states in a monochromatically tilted optical lattice

    Full text link
    We study the one-dimensional attractive fermionic Hubbard model under the influence of periodic driving with the time-dependent density matrix renormalization group method. We show that the system can be driven into an unconventional pairing state characterized by a condensate made of Cooper pairs with a finite center-of-mass momentum similar to a Fulde-Ferrell state. We obtain results both in the laboratory and the rotating reference frames demonstrating that the momentum of the condensate can be finely tuned by changing the ratio between the amplitude and the frequency of the driving. In particular, by quenching this ratio to the value corresponding to suppression of the tunneling and the Coulomb interaction strength to zero, we are able to “freeze” the condensate. We finally study the effects of different initial conditions and compare our numerical results to those obtained from a time-independent Floquet theory in the large frequency regime. Our work offers the possibility of engineering and controlling unconventional pairing states in fermionic condensates.This work was conducted at the Center for Nanophase Materials Sciences, sponsored by the Scientific User Facilities Division (SUFD), Basic Energy Sciences (BES), U.S. Department of Energy (DOE), under contract with UT-Battelle. A.N. acknowledges support by the Center for Nanophase Materials Sciences and by the Early Career Research program, SUFD, BES, DOE. A.E.F. acknowledges the DOE, Office of Basic Energy Sciences, for support under Grant No. DE-SC0014407. A.P. was supported by NSF DMR-1506340, ARO W911NF1410540, and AFOSR FA9550-16-1-0334. (Scientific User Facilities Division (SUFD); Basic Energy Sciences (BES); U.S. Department of Energy (DOE); UT-Battelle; Center for Nanophase Materials Sciences; Early Career Research program; SUFD; BES; DOE; DE-SC0014407 - DOE, Office of Basic Energy Sciences; NSF DMR-1506340; ARO W911NF1410540; AFOSR FA9550-16-1-0334)Published versio

    Reducing entanglement with symmetries: application to persistent currents in impurity problems

    Full text link
    We show how canonical transformations can map problems with impurities coupled to non-interacting rings onto a similar problem with open boundary conditions. The consequent reduction of entanglement, and the fact the density matrix renormalization group (DMRG) is optimally suited for open boundary conditions, increases the efficiency of the method exponentially, making it an unprecedented tool to study persistent currents. We demonstrate its application to the case of the one-channel and two-channel Kondo problems, finding interesting connections between the two

    Real time evolution using the density matrix renormalization group

    Full text link
    We describe an extension to the density matrix renormalization group method incorporating real time evolution into the algorithm. Its application to transport problems in systems out of equilibrium and frequency dependent correlation functions is discussed and illustrated in several examples. We simulate a scattering process in a spin chain which generates a spatially non-local entangled wavefunction.Comment: 4 pages, 4 eps figures, some minor corrections in text and Eq.(3

    Density Matrix Renormalization Group Study of Incompressible Fractional Quantum Hall States

    Full text link
    We develop the Density Matrix Renormalization Group (DMRG) technique for numerically studying incompressible fractional quantum Hall (FQH) states on the sphere. We calculate accurate estimates for ground state energies and excitationgaps at FQH filling fractions \nu=1/3 and \nu=5/2 for systems that are almost twice as large as the largest ever studied by exact diagonalization. We establish, by carefully comparing with existing numerical results on smaller systems, that DMRG is a highly effective numerical tool for studying incompressible FQH states.Comment: 5 pages, 4 figure

    Exotic paired phases in ladders with spin-dependent hopping

    Full text link
    Fermions in two-dimensions (2D) when subject to anisotropic spin-dependent hopping can potentially give rise to unusual paired states in {\it unpolarized} mixtures that can behave as non-Fermi liquids. One possibility is a fully paired state with a gap for fermion excitations in which the Cooper pairs remain uncondensed. Such a "Cooper-pair Bose-metal" phase would be expected to have a singular Bose-surface in momentum space. As demonstrated in the context of 2D bosons hopping with a frustrating ring-exchange interaction, an analogous Bose-metal phase has a set of quasi-1D descendent states when put on a ladder geometry. Here we present a density matrix renormalization group (DMRG) study of the attractive Hubbard model with spin-dependent hopping on a two-leg ladder geometry. In our setup, one spin species moves preferentially along the leg direction, while the other does so along the rung direction. We find compelling evidence for the existence of a novel Cooper-pair Bose-metal phase in a region of the phase diagram at intermediate coupling. We further explore the phase diagram of this model as a function of hopping anisotropy, density, and interaction strength, finding a conventional superfluid phase, as well as a phase of paired Cooper pairs with d-wave symmetry, similar to the one found in models of hard-core bosons with ring-exchange. We argue that simulating this model with cold Fermi gases on spin dependent optical lattices is a promising direction for realizing exotic quantum states.Comment: 10 pages, 12 figure
    corecore