2,430 research outputs found

    On the equality of Hausdorff and box counting dimensions

    Full text link
    By viewing the covers of a fractal as a statistical mechanical system, the exact capacity of a multifractal is computed. The procedure can be extended to any multifractal described by a scaling function to show why the capacity and Hausdorff dimension are expected to be equal.Comment: CYCLER Paper 93mar001 Latex file with 3 PostScript figures (needs psfig.sty

    Palatini approach to Born-Infeld-Einstein theory and a geometric description of electrodynamics

    Full text link
    The field equations associated with the Born-Infeld-Einstein action are derived using the Palatini variational technique. In this approach the metric and connection are varied independently and the Ricci tensor is generally not symmetric. For sufficiently small curvatures the resulting field equations can be divided into two sets. One set, involving the antisymmetric part of the Ricci tensor RμνR_{\stackrel{\mu\nu}{\vee}}, consists of the field equation for a massive vector field. The other set consists of the Einstein field equations with an energy momentum tensor for the vector field plus additional corrections. In a vacuum with Rμν=0R_{\stackrel{\mu\nu}{\vee}}=0 the field equations are shown to be the usual Einstein vacuum equations. This extends the universality of the vacuum Einstein equations, discussed by Ferraris et al. \cite{Fe1,Fe2}, to the Born-Infeld-Einstein action. In the simplest version of the theory there is a single coupling constant and by requiring that the Einstein field equations hold to a good approximation in neutron stars it is shown that mass of the vector field exceeds the lower bound on the mass of the photon. Thus, in this case the vector field cannot represent the electromagnetic field and would describe a new geometrical field. In a more general version in which the symmetric and antisymmetric parts of the Ricci tensor have different coupling constants it is possible to satisfy all of the observational constraints if the antisymmetric coupling is much larger than the symmetric coupling. In this case the antisymmetric part of the Ricci tensor can describe the electromagnetic field, although gauge invariance will be broken.Comment: 12 page

    Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides

    Get PDF
    The realization of practical on-chip plasmonic devices will require efficient coupling of light into and out of surface plasmon waveguides over short length scales. In this letter, we report on low insertion loss for polymer-on-gold dielectric-loaded plasmonic waveguides end-coupled to silicon-on-insulator waveguides with a coupling efficiency of 79 ± 2% per transition at telecommunication wavelengths. Propagation loss is determined independently of insertion loss by measuring the transmission through plasmonic waveguides of varying length, and we find a characteristic surface-plasmon propagation length of 51 ± 4 μm at a free-space wavelength of λ = 1550 nm. We also demonstrate efficient coupling to whispering-gallery modes in plasmonic ring resonators with an average bending-loss-limited quality factor of 180 ± 8

    A Time-Space Tradeoff for Triangulations of Points in the Plane

    Get PDF
    In this paper, we consider time-space trade-offs for reporting a triangulation of points in the plane. The goal is to minimize the amount of working space while keeping the total running time small. We present the first multi-pass algorithm on the problem that returns the edges of a triangulation with their adjacency information. This even improves the previously best known random-access algorithm

    Log-periodic corrections to scaling: exact results for aperiodic Ising quantum chains

    Full text link
    Log-periodic amplitudes of the surface magnetization are calculated analytically for two Ising quantum chains with aperiodic modulations of the couplings. The oscillating behaviour is linked to the discrete scale invariance of the perturbations. For the Fredholm sequence, the aperiodic modulation is marginal and the amplitudes are obtained as functions of the deviation from the critical point. For the other sequence, the perturbation is relevant and the critical surface magnetization is studied.Comment: 12 pages, TeX file, epsf, iopppt.tex, xref.tex which are joined. 4 postcript figure

    Classical Trajectories for Complex Hamiltonians

    Full text link
    It has been found that complex non-Hermitian quantum-mechanical Hamiltonians may have entirely real spectra and generate unitary time evolution if they possess an unbroken \cP\cT symmetry. A well-studied class of such Hamiltonians is H=p2+x2(ix)ϵH= p^2+x^2(ix)^\epsilon (ϵ0\epsilon\geq0). This paper examines the underlying classical theory. Specifically, it explores the possible trajectories of a classical particle that is governed by this class of Hamiltonians. These trajectories exhibit an extraordinarily rich and elaborate structure that depends sensitively on the value of the parameter ϵ\epsilon and on the initial conditions. A system for classifying complex orbits is presented.Comment: 24 pages, 34 figure

    Born-Regulated Gravity in Four Dimensions

    Get PDF
    Previous work involving Born-regulated gravity theories in two dimensions is extended to four dimensions. The action we consider has two dimensionful parameters. Black hole solutions are studied for typical values of these parameters. For masses above a critical value determined in terms of these parameters, the event horizon persists. For masses below this critical value, the event horizon disappears, leaving a ``bare mass'', though of course no singularity.Comment: LaTeX, 15 pages, 2 figure

    Bifurcations and Chaos in the Six-Dimensional Turbulence Model of Gledzer

    Full text link
    The cascade-shell model of turbulence with six real variables originated by Gledzer is studied numerically using Mathematica 5.1. Periodic, doubly-periodic and chaotic solutions and the routes to chaos via both frequency-locking and period-doubling are found by the Poincar\'e plot of the first mode v1v_1. The circle map on the torus is well approximated by the summation of several sinusoidal functions. The dependence of the rotation number on the viscosity parameter is in accordance with that of the sine-circle map. The complicated bifurcation structure and the revival of a stable periodic solution at the smaller viscosity parameter in the present model indicates that the turbulent state may be very sensitive to the Reynolds number.Comment: 19 pages, 12 figures submitted to JPS
    corecore