38 research outputs found

    Long-Term Potentiation in the CA1 Hippocampus Induced by NR2A Subunit-Containing NMDA Glutamate Receptors Is Mediated by Ras-GRF2/Erk Map Kinase Signaling

    Get PDF
    BACKGROUND: NMDA-type glutamate receptors (NMDARs) are major contributors to long-term potentiation (LTP), a form of synaptic plasticity implicated in the process of learning and memory. These receptors consist of calcium-permeating NR1 and multiple regulatory NR2 subunits. A majority of studies show that both NR2A and NR2B-containing NMDARs can contribute to LTP, but their unique contributions to this form of synaptic plasticity remain poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we show that NR2A and NR2B-containing receptors promote LTP differently in the CA1 hippocampus of 1-month old mice, with the NR2A receptors functioning through Ras-GRF2 and its downstream effector, Erk Map kinase, and NR2B receptors functioning independently of these signaling molecules. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that NR2A-, but not NR2B, containing NMDA receptors induce LTP in pyramidal neurons of the CA1 hippocampus from 1 month old mice through Ras-GRF2 and Erk. This difference add new significance to the observation that the relative levels of these NMDAR subtypes is regulated in neurons, such that NR2A-containing receptors become more prominent late in postnatal development, after sensory experience and synaptic activity

    RalA but Not RalB Enhances Polarized Delivery of Membrane Proteins to the Basolateral Surface of Epithelial Cells

    No full text
    RalA and RalB constitute a family of highly similar (85% identity) Ras-related GTPases. Recently, active forms of both RalA and RalB have been shown to bind to the exocyst complex, implicating them in the regulation of cellular secretion. However, we show here that only active RalA enhances the rate of delivery of E-cadherin and other proteins to their site in the basolateral membrane of MDCK cells, consistent with RalA being a regulator of exocyst function. One reason for this difference is that RalA binds more effectively to the exocyst complex than active RalB does both in vivo and in vitro. Another reason is that active RalA localizes to perinuclear recycling endosomes, where regulation of vesicle sorting is thought to take place, while active RalB does not. Strikingly, analysis of chimeras made between RalA and RalB reveals that high-affinity exocyst binding by RalA is due to unique amino acid sequences in RalA that are distal to the common effector-binding domains shared by RalA and RalB. Moreover, these chimeras show that the perinuclear localization of active RalA is due in part to its unique variable domain near the C terminus. This distinct localization appears to be important for RalA effects on secretion because all RalA mutants tested that failed to localize to the perinuclear region also failed to promote basolateral delivery of E-cadherin. Interestingly, one of these inactive mutants maintained binding to the exocyst complex, suggesting that RalA binding to the exocyst is necessary but not sufficient for RalA to promote basolateral delivery of membrane proteins

    The R-Ras GTPase Mediates Cross Talk between Estrogen and Insulin Signaling in Breast Cancer Cells

    No full text
    The signaling cascades activated by insulin and IGF-1 contribute to the control of multiple cellular functions, including glucose metabolism and cell proliferation. In most cases these effects are mediated, at least in part, by insulin receptor substrates (IRS), one of which is insulin receptor substrate 1 (IRS-1). R-Ras is a member of the Ras family of GTPases and is involved in a variety of biological processes, including integrin activation, cell migration, and control of cell proliferation. Here we demonstrate that both R-Ras and BCAR3, a regulator of R-Ras activity that has been implicated in breast cancer, regulate the level of IRS-1 protein in estrogen-dependent MCF-7 and ZR75 breast cancer cells. In particular, expression of a constitutively activated R-Ras mutant, R-Ras38V, or of BCAR3 accelerates the degradation of IRS-1, leading to the impairment of signaling through insulin but not epidermal growth factor receptors. Moreover, knockdown of endogenous R-Ras levels in MCF-7 cells inhibits IRS-1 degradation induced by estrogen signaling blockade but not by long-term insulin treatment. Consistent with these results, both R-Ras38V expression and estrogen signaling blockade lead to the degradation of IRS-1, at least in part, through calpain activity. These findings show that R-Ras activity mediates inhibition of insulin signaling associated with suppression of estrogen action, implicating this GTPase in a growth-inhibitory mechanism associated with antiestrogen treatment of breast cancer

    Interaction of Rac Exchange Factors Tiam1 and Ras-GRF1 with a Scaffold for the p38 Mitogen-Activated Protein Kinase Cascade

    No full text
    Tiam1 and Ras-GRF1 are guanine nucleotide exchange factors (GEFs) that activate the Rac GTPase. The two GEFs have similar N-terminal regions containing pleckstrin homology domains followed by coiled-coils and additional sequences that function together to allow regulated GEF activity. Here we show that this N-terminal region of both proteins binds to the scaffold protein IB2/JIP2. IB2/JIP2 is a scaffold for the p38 mitogen-activated protein (MAP) kinase cascade because it binds to the Rac target MLK3, the MAP kinase kinase MKK3, and the p38 MAP kinase. Expression of IB2/JIP2 in cells potentiates the ability of Tiam1 or Ras-GRF1 to activate the p38 MAP kinase cascade but not the Jnk MAP kinase cascade. In addition, Tiam1 or Ras-GRF1 binding to IB2/JIP2 increases the association of the components of the p38 MAP kinase signaling cassette with IB2/JIP2 in cells and activates scaffold-associated p38. These findings imply that Tiam1 and Ras-GRF1 can contribute to Rac signaling specificity by their ability to form a complex with a scaffold that binds components of one of the many known Rac effector pathways

    Evidence for a Ras/Ral signaling cascade

    No full text
    It is becoming clear that Ras proteins mediate their diverse biological functions by binding to, and participating in, the activation of multiple downstream targets. Recent work has identified nucleotide-exchange factors for Ral-GTPases as the newest members of the set of putative Ras \u27effector molecules\u27. This new work has also detected two potential downstream targets of Ral proteins, a novel CDC42/Rac GTPase-activating protein and a phospholipase D
    corecore