221 research outputs found

    CSCLog: A Component Subsequence Correlation-Aware Log Anomaly Detection Method

    Full text link
    Anomaly detection based on system logs plays an important role in intelligent operations, which is a challenging task due to the extremely complex log patterns. Existing methods detect anomalies by capturing the sequential dependencies in log sequences, which ignore the interactions of subsequences. To this end, we propose CSCLog, a Component Subsequence Correlation-Aware Log anomaly detection method, which not only captures the sequential dependencies in subsequences, but also models the implicit correlations of subsequences. Specifically, subsequences are extracted from log sequences based on components and the sequential dependencies in subsequences are captured by Long Short-Term Memory Networks (LSTMs). An implicit correlation encoder is introduced to model the implicit correlations of subsequences adaptively. In addition, Graph Convolution Networks (GCNs) are employed to accomplish the information interactions of subsequences. Finally, attention mechanisms are exploited to fuse the embeddings of all subsequences. Extensive experiments on four publicly available log datasets demonstrate the effectiveness of CSCLog, outperforming the best baseline by an average of 7.41% in Macro F1-Measure.Comment: submitted to TKDD, 18 pages and 7 figure

    Design of overvoltage suppression filter based on high-frequency modeling of cable in SiC based motor drive

    Get PDF
    SiC-based motor drives have the advantages of achieving higher efficiency and higher power density than traditional Si-based motor drives, and are gradually being widely used in electric power transmission. Due to different application situations such as oil field and airplane, a long cable is applied between the motor drive and three-phase motor and the distance may exceed hundreds of meters, which will cause serious voltage reflection problem, damaging working life of the motor. Meanwhile, the high slew rate of output voltage created by SiC-based motor drive deteriorates this phenomenon. In order to solve this problem, we first analyze the principle and influencing factors of voltage reflection, and establish the equivalent circuit model of the long cable. Then we put forward design method of LRC passive filter to suppress voltage reflection, and give simulation analysis. At last we built an experimental platform to verify the effectiveness of the LRC passive filter in SiC-based motor drive, and the experimental results show that the LRC passive filter with optimized parameters has good suppression effect of voltage reflection

    Low-intensity pulsed ultrasound promotes the osteogenesis of mechanical force-treated periodontal ligament cells via Piezo1

    Get PDF
    BackgroundLow-intensity pulsed ultrasound (LIPUS) can accelerate tooth movement and preserve tooth and bone integrity during orthodontic treatment. However, the mechanisms by which LIPUS affects tissue remodeling during orthodontic tooth movement (OTM) remain unclear. Periodontal ligament cells (PDLCs) are pivotal in maintaining periodontal tissue equilibrium when subjected to mechanical stimuli. One notable mechano-sensitive ion channel, Piezo1, can modulate cellular function in response to mechanical cues. This study aimed to elucidate the involvement of Piezo1 in the osteogenic response of force-treated PDLCs when stimulated by LIPUS.MethodAfter establishing rat OTM models, LIPUS was used to stimulate rats locally. OTM distance and alveolar bone density were assessed using micro-computed tomography, and histological analyses included hematoxylin and eosin staining, tartrate-resistant acid phosphatase staining and immunohistochemical staining. GsMTx4 and Yoda1 were respectively utilized for Piezo1 functional inhibition and activation experiments in rats. We isolated human PDLCs (hPDLCs) in vitro and evaluated the effects of LIPUS on the osteogenic differentiation of force-treated hPDLCs using real-time quantitative PCR, Western blot, alkaline phosphatase and alizarin red staining. Small interfering RNA and Yoda1 were employed to validate the role of Piezo1 in this process.ResultsLIPUS promoted osteoclast differentiation and accelerated OTM in rats. Furthermore, LIPUS alleviated alveolar bone resorption under pressure and enhanced osteogenesis of force-treated PDLCs both in vivo and in vitro by downregulating Piezo1 expression. Subsequent administration of GsMTx4 in rats and siPIEZO1 transfection in hPDLCs attenuated the inhibitory effect on osteogenic differentiation under pressure, whereas LIPUS efficacy was partially mitigated. Yoda1 treatment inhibited osteogenic differentiation of hPDLCs, resulting in reduced expression of Collagen ā… Ī±1 and osteocalcin in the periodontal ligament. However, LIPUS administration was able to counteract these effects.ConclusionThis research unveils that LIPUS promotes the osteogenesis of force-treated PDLCs via downregulating Piezo1

    Pore density of the benthic foraminiferal test responded to the hypoxia off the Changjiang estuary in the East China Sea

    Get PDF
    The benthic foraminiferal assemblages are commonly used to indicate different oxygenation conditions. In the last few decades, pore characteristics of the benthic foraminiferal tests from the micro-perspective using high-spatial-resolution analysis have been extensively suggested to indicate redox changes. Based on the whole test of the living shallow-infaunal species Bolivina robusta using a more representative and comprehensive method, we observed a significant negative correlation between the pore density (PD) and bottom dissolved oxygen (DO) concentration, and the average PD was about 36% higher in hypoxic environments (DO3 mg/l). In terms of reproduction pattern in hypoxic environments, the species seemed to mainly choose the asexual life cycle (74.60%) to get more small generations with larger pore size (PS) (asexual 7 Ī¼m vs. sexual 4 Ī¼m) and exterior ornamentation (irregular papillae) as their survival strategy. The results provide new insight into the benthic foraminiferal ecology to reconstruct the pale-oceanography and paleo-ecology changes in the East China Sea. Moreover, this study has the potential to be applied in broad regions as an independent proxy by comparison to other widely-distributed benthic foraminiferal species

    High-Resolution Boundary Detection for Medical Image Segmentation with Piece-Wise Two-Sample T-Test Augmented Loss

    Full text link
    Deep learning methods have contributed substantially to the rapid advancement of medical image segmentation, the quality of which relies on the suitable design of loss functions. Popular loss functions, including the cross-entropy and dice losses, often fall short of boundary detection, thereby limiting high-resolution downstream applications such as automated diagnoses and procedures. We developed a novel loss function that is tailored to reflect the boundary information to enhance the boundary detection. As the contrast between segmentation and background regions along the classification boundary naturally induces heterogeneity over the pixels, we propose the piece-wise two-sample t-test augmented (PTA) loss that is infused with the statistical test for such heterogeneity. We demonstrate the improved boundary detection power of the PTA loss compared to benchmark losses without a t-test component

    Inhibition of PPARĪ³ by BZ26, a GW9662 derivate, attenuated obesity-related breast cancer progression by inhibiting the reprogramming of mature adipocytes into to cancer associate adipocyte-like cells

    Get PDF
    Obesity has been associated with the development of 13 different types of cancers, including breast cancer. Evidence has indicated that cancer-associated adipocytes promote the proliferation, invasion, and metastasis of cancer. However, the mechanisms that link CAAs to the progression of obesity-related cancer are still unknown. Here, we found the mature adipocytes in the visceral fat of HFD-fed mice have a CAAs phenotype but the stromal vascular fraction of the visceral fat has not. Importantly, we found the derivate of the potent PPARĪ³ antagonist GW9662, BZ26 inhibited the reprogramming of mature adipocytes in the visceral fat of HFD-fed mice into CAA-like cells and inhibited the proliferation and invasion of obesity-related breast cancer. Further study found that it mediated the browning of visceral, subcutaneous and perirenal fat and attenuated inflammation of adipose tissue and metabolic disorders. For the mechanism, we found that BZ26 bound and inhibited PPARĪ³ by acting as a new modulator. Therefore, BZ26 serves as a novel modulator of PPARĪ³ activity, that is, capable of inhibiting obesity-related breast cancer progression by inhibiting of CAA-like cell formation, suggesting that inhibiting the reprogramming of mature adipocytes into CAAs or CAA-like cells may be a potential therapeutic strategy for obesity-related cancer treatment

    TRIB3, as a robust prognostic biomarker for HNSC, is associated with poor immune infiltration and cancer cell immune evasion

    Get PDF
    ObjectiveAs a pseudokinase, Tribbles Pseudokinase 3 (TRIB3) is implicated in a wide array of biological processes, including cell signal transduction, metabolic regulation, stress responses, and immune regulation. While its significant role in the immune regulation of certain cancers is well-established, the specific functions and impact of TRIB3 in head and neck squamous cell carcinoma (HNSC) remain unclear.MethodsThe data of RNA-sequence was acquired from the TCGA database to analyze the expression patterns of TRIB3 and elucidate its prognostic value in HNSC patients. Furthermore, the correlation between TRIB3 and tumor mutation burden, clinical data, immune checkpoint genes, and immune cell infiltration was explored. Moreover, the TRIB3 location in tumor tissues and subcellular structures was identified via Tisch in the HPA database, and the potential protein interaction molecules for TRIB3 were elucidated in the STRING database. The potential TRIB3 gene function was assessed using gene set enrichment analysis (GSEA), whereas the TRIB3 expression levels in clinical HNSC samples were verified by RT-qPCR and immunohistochemistry. the role of TRIB3 in enhancing the malignant behavior of HNSC cells was validated in vitro through a series of methods including RT-qPCR, CCK8 assay, wound healing assay, and transwell assay.ResultsIt was revealed that TRIB3 was significantly overexpressed in the nucleus and cytoplasm of HNSC. Furthermore, this overexpression markedly enhanced the migration ability of tumor cells. As an independent prognostic factor, TRIB3 was associated with advanced tumor T stage and was significantly involved with tumor mutation burden and immune cell infiltration in HNSC. Moreover, it was observed that TRIB3 was not a predicted factor for PD1/PDL1 and ATL4 inhibitor treatment; however, it was substantially correlated with various immune evasion-related genes in HNSC.ConclusionTRIB3 could serve as a potential prognostic marker for HNSC and might be a key gene mediating HNSC immune evasion
    • ā€¦
    corecore