4 research outputs found

    Characteristics of Positive Surges in a Rectangular Channel

    No full text
    A positive surge is an unsteady open channel flow motion characterized by an increase of flow depth. In previous experimental studies, a positive surge was typically induced by either a sudden increase of discharge in a channel or by the rapid closure of a downstream sluice gate, thus leading to a steep initial profile. However, in many instances, the evolution of a positive surge is of a progressive manner (e.g., in the downstream navigation canal during the emptying operation of lock chambers). In the present work, the inception and development of a positive surge induced by a progressive increase of discharge was investigated in a rectangular channel with a smooth bed. Both undular and breaking surges were studied. The results demonstrate that the maximum wave height at the first wave crest of an undular surge is in very close agreement with the McCowan theory. Additionally, the wave amplitude essentially shows a linearly increasing trend with an increasing surge Froude number up to Fr0 = 1.26 to 1.28, whereas it tends to suggest a power law reduction for larger surge Froude numbers. Moreover, the dispersion of undular surges is consistent with the linear wave theory only for surge Froude numbers close to unity. Overall, the present study demonstrates the unique features of positive surges induced by a progressive increase of discharge

    Investigation into the Water Exit Behavior of a Cavity

    No full text
    Launching-type ship lifts are commonly used in navigational mountain rivers to realize river channelization and communicate different water systems. However, the complicated water–gas–solid coupling process incurred during the water exit of cavities beneath a ship chamber can strongly affect the stability of the chamber and even affect the ship lift operation. In this study, the water exit behavior of a generalized cavity model was investigated using an experimental–numerical approach. Both the air pressure and flow patterns during the water exit process were analyzed. The results demonstrate three different types of air pressure process in cavity exits. Based on the results, a series of relationships are proposed to predict the maximum negative pressure incurred in the water exit process. Moreover, a method was developed to determine the optimum ported area of the cavity regarding the absence of additional hydrodynamic loads. Furthermore, a classification system to typify the flow patterns manifesting in the cavity is proposed. It was found that the transition from a slug flow to a drop flow could be determined as a transition coefficient K equal to 1

    Energy Dissipation in Circular Drop Manholes under Different Outflow Conditions

    No full text
    Circular drop manholes have been an important device for energy dissipation and reduction of flow velocities in urban drainage networks. The energy dissipation in a drop manhole depends on the manhole flow patterns, the outflow regimes in the exit pipe and the downstream operation conditions, and is closely related to the hydraulic and geometric parameters of the manhole. In the present work, the energy dissipation of a drop manhole with three drop heights was experimentally investigated under free outflow conditions and constrained outflow conditions. The results demonstrate that the local head loss coefficient is solely related to the dimensionless drop parameter for free surface outflow without a downstream backwater effect, whereas it depends on the dimensionless submerge parameter for constrained outflow. Moreover, it is concluded that the energy dissipation is largely promoted when outlet choking occurs
    corecore