15 research outputs found

    Sequence Variation and Expression Analysis of Seed Dormancy- and Germination-Associated ABA- and GA-Related Genes in Rice Cultivars

    Get PDF
    Abscisic acid (ABA) and Gibberellic acid (GA) play key roles in regulating seed dormancy and germination. First, when examining germination of different rice cultivars, we found that their germination timing and dormancy status are rather distinct, coupled with different GA/ABA ratio. Second, we studied genomic sequences of ABA and GA dormancy- and germination-associated genes in rice and discovered single nucleotide polymorphisms and insertions/deletions (Indels) in both coding and regulatory sequences. We aligned all these variations to the genome assemblies of 9311 and PA64s and demonstrated their relevance to seed dormancy both quantitatively and qualitatively based on gene expression data. Third, we surveyed and compared differentially expressed genes in dry seeds between 9311 and PA64s to show that these differentially expressed genes may play roles in seed dormancy and germination

    Study of GABA in Healthy Volunteers: Pharmacokinetics and Pharmacodynamics

    Get PDF
    Preclinical studies show that GABA exerts anti-diabetic effects in rodent models of type 1 diabetes. Because little is known about its absorption and effects in humans, we investigated the pharmacokinetics and pharmacodynamics of GABA in healthy volunteers. Twelve subjects were subjected to an open-labeled, three-period trial involving sequential oral administration of placebo, 2 g GABA once, and 2 g GABA three times/day for 7 days, with a 7-day washout between each period. GABA was rapidly absorbed (Tmax: 0.5 ~ 1 h) with the half-life (t1/2) of 5 h. No accumulation was observed after repeated oral GABA administration for 7 days. Remarkably, GABA significantly increased circulating insulin levels in the subjects under either fasting (1.6-fold, single dose; 2.0-fold, repeated dose; p \u3c 0.01) or fed conditions (1.4-fold, single dose; 1.6-fold, repeated dose; p \u3c 0.01). GABA also increased glucagon levels only under fasting conditions (1.3-fold, single dose, p \u3c 0.05; 1.5-fold, repeated dose, p \u3c 0.01). However, there were no significant differences in the insulin-to-glucagon ratio and no significant change in glucose levels in these healthy subjects during the study period. Importantly, GABA significantly decreased glycated albumin levels in the repeated dosing period. Subjects with repeated dosing showed an elevated incidence of minor adverse events in comparison to placebo or the single dosing period, most notably transient discomforts such as dizziness and sore throat. However, there were no serious adverse events observed throughout the study. Our data show that GABA is rapidly absorbed and tolerated in human beings; its endocrine effects, exemplified by increasing islet hormonal secretion, suggest potential therapeutic benefits for diabetes

    Just Entertainment: Effects of TV series about Intrigue on Young Adults

    Get PDF
    The potential harmful effects of media violence have been studied systematically and extensively. However, very little attention has been devoted to the intrigue and struggles between people depicted in the mass media. A longitudinal randomized experimental group-control group, pretest–posttest design study was conducted to examine the potential effects of this type of TV series on young adults. A typical and popular TV series was select as a stimulus. By scrutinizing the outline of this TV series and inspired by studies of the effects of media violence, one behavioral observation and five scales were adopted as dependent measures. The study did not find any effect of the intrigue TV series on any of the six dependent variables. Finally, possible interference variables or moderators were discussed

    Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system

    Get PDF
    The tripartite symbiosis between legumes, rhizobia and mycorrhizal fungi are generally considered to be beneficial for the nitrogen (N) uptake of legumes, but the facilitation of symbiosis in legume/non-legume intercropping systems is not clear. Therefore, the aims of the research are as follows: 1) to verify if the dual inoculation can facilitate the N uptake and N transfer in maize/soybean intercropping systems and 2) to calculate how much N will be transferred from soybean to maize. A pot experiment with different root separations (solid barrier, mesh (30 µm) barrier and no barrier) was conducted, and the 15N isotopic tracing method was used to calculate how much N transferred from soybean to maize inoculated with arbuscular mycorrhizal fungi (AMF) and rhizobium in a soybean (Glycine max L.cv. Dongnong No.42)/maize (Zea mays L.cv. Dongnong No.48) intercropping system. Compared with the Glomus mosseae inoculation (G.m.), Rhizobium SH212 inoculation (SH212), no inoculation (NI), the dual inoculation (SH212+G.m.) increased the N uptake of soybean by 28.69%, 39.58% and 93.07% in a solid barrier system. N uptake of maize inoculated with both Glomus mosseae and rhizobium was 1.20, 1.28 and 1.68 times more than that of G.m., SH212 and NI, respectively, in solid barrier treatments. In addition, the amount of N transferred from soybean to maize in a dual inoculation system with a mesh barrier was 7.25 mg, 7.01 mg and 11.45 mg more than that of G.m., SH212 and NI and similarly, 6.40 mg, 7.58 mg and 12.46 mg increased in no barrier treatments. Inoculating with both AMF and rhizobium in the soybean/maize intercropping system improved the N fixation efficiency of soybean and promoted N transfer from soybean to maize, resulting in the improvement of yield advantages of legume/non-legume intercropping

    Painful faces-induced attentional blink modulated by top-down and bottom-up mechanisms

    No full text
    Pain-related stimuli can capture attention in an automatic (bottom-up) or intentional (top-down) fashion. Previous studies have examined attentional capture by pain-related information using spatial attention paradigms that involve mainly a bottom-up mechanism. In the current study, we investigated the pain information–induced attentional blink (AB) using a rapid serial visual presentation (RSVP) task, and compared the effects of task-irrelevant and task-relevant pain distractors. Relationships between accuracy of target identification and individual traits (i.e., empathy and catastrophizing thinking about pain) were also examined. The results demonstrated that task-relevant painful faces had a significant pain information–induced AB effect, whereas task-irrelevant faces a near-significant trend of this effect, supporting the notion that pain-related stimuli can influence the temporal dynamics of attention. Furthermore, we found a significant negative correlation between response accuracy and pain catastrophizing score in task-relevant trials. These findings suggest that active scanning of environmental information related to pain produces greater deficits in cognition than does unintentional attention toward pain, which may represent the different ways in which healthy individuals and patients with chronic pain process pain-relevant information. These results may provide insight into the understanding of maladaptive attentional processing in patients with chronic pain

    The Dorsal Anterior Cingulate Cortex Modulates Dialectical Self-Thinking

    Get PDF
    Dialectical self-thinking involves holding the view that one can possess contradictory traits such as extraverted and introverted. Prior work has demonstrated that the dorsal part of anterior cingulate cortex (dACC) plays a crucial role in conflict monitoring as well as self-related processing. Here we tested the function of dACC in dialectical self-thinking using a modified classical self-referential paradigm (self- vs. other-referential thinking), in which participants had to make a judgment whether a simultaneously presented pair of contradictory or non-contradictory traits properly described them while brain activity was recording using functional magnetic resonance imaging (fMRI). The data showed that activity in the dACC during the processing of self-relevant conflicting information was positively correlated with participants' dispositional level of naïve dialecticism (measured with the Dialectical Self Scale). Psychophysiological interaction (PPI) analyses further revealed increased functional connectivity between the dACC and the caudate, middle temporal gyrus and hippocampus during the processing of self-relevant conflicting information for dialectical thinkers. These results support the hypothesis that the dACC has a key role in dialectical self-thinking

    Isolation and functional characterization of bidirectional promoters in rice

    Get PDF
    Bidirectional promoters, which show great application potential in genetic improvement of plants, have aroused great research interest recently. However, most bidirectional promoters were cloned individually in the studies of single genes. Here, we initiatively combined RNA-seq data and cDNA microarray data to discover the potential bidirectional promoters in rice genome. Based on the expression level and correlation of each adjacent and oppositely transcribed gene pair, we selected four candidate gene pairs. Then, the intergenic region between each pair was isolated and cloned into a dual reporter vector pDX2181 for functional identification. GUS and GFP assays of the transgenic plants indicated that all the intergenic regions showed bidirectional expression activity in various tissues. Through 5’ and 3’ deletion analysis on one of the above bidirectional promoters, we identified the enhancing region which sharply increased its bidirectional expression efficiency and the essential regions respectively responsible for its 5’ and 3’ basic expression activity. The bidirectional arrangement of the four gene pairs in six gramineous plants was also analyzed, showing the conserved characteristics of the four bidirectional promoters identified in our study. In addition, two novel cis-sequences conserved in the four bidirectional promoters were discovered by bioinformatic identification. Our study proposes a feasible method for selecting, cloning and functionally identifying bidirectional promoters as well as for discovering their bidirectional regulatory regions and conserved sequences in rice

    The broad-host-range plasmid pSFA231 isolated from petroleum-contaminated sediment represents a new member of the PromA plasmid family

    Get PDF
    A self-transmissible broad-host-range (BHR) plasmid pSFA231 was isolated from petroleum-contaminated sediment in Shen-fu wastewater irrigation zone, China, using the triparental mating exogenous plasmid capture method. Based on its complete sequence the plasmid has a size of 41.5 kb and codes for 50 putative open reading frames (orfs), 28 of which represent genes involved in replication, partitioning and transfer functions of the plasmid. Phylogenetic analysis grouped pSFA231 into the newly defined PromA plasmid family, which currently includes five members. Further comparative genomic analysis shows that pSFA231 shares the common backbone regions with the other PromA plasmids, i.e., genes involved in replication, maintenance and control, and conjugative transfer. Nevertheless, phylogenetic divergence was found in specific gene products. We propose to divide the PromA group into two subgroups, PromA-α (pMRAD02, pSB102) and PromA-β (pMOL98, pIPO2T, pSFA231, pTer331), based on the splits network analysis of the RepA protein. Interestingly, a cluster of hypothetical orfs located between parA and traA of pSFA231 shows high similarity with the corresponding regions on pMOL98, pIPO2T and pTer331, suggesting these hypothetical orfs may represent ‘‘essential’’ plasmid backbone genes for the PromA-β subgroup. Alternatively, they may also be accessory genes that were first acquired and then stayed as the plasmid diverged. Our study increases the available collection of complete genome sequences of BHR plasmids, and since pSFA231 is the only characterized PromA plasmid from China, our findings also enhance our understanding of the genetic diversity of this plasmid group in different parts of the world

    Dendritic morphology, synaptic transmission, and activity of mature granule cells born following pilocarpine-induced status epilepticus in the rat

    Get PDF
    To understand the potential role of enhanced hippocampal neurogenesis after pilocarpine-induced status epilepticus (SE) in the development of epilepsy, we quantitatively analyzed the geometry of apical dendrites, synaptic transmission, and activation levels of normotopically distributed mature newborn granule cells in the rat.SE in male Sprague-Dawley rats lasting for more than 2 hours was induced by an intraperitoneal injection of pilocarpine. The complexity, spine density, miniature post-synaptic currents, and activity-regulated cytoskeleton-associated protein (Arc) expression of granule cells born five days after SE were studied at least 10 weeks after CAG-GFP retroviral vector-mediated labeling.Mature granule cells born after SE had dendritic complexity similar to that of granule cells born naturally, but with denser mushroom-like spines in dendritic segments located in the outer molecular layer. Miniature inhibitory post-synaptic currents (mIPSCs) were similar between the controls and rats subjected to SE; however, smaller miniature excitatory post-synaptic current (mEPSC) amplitude with a trend toward less frequent was found in mature granule cells born after SE. After maturation, granule cells born after SE did not show denser Arc expression in the resting condition or after being activated by transient seizure activity than vicinal GFP-unlabeled granule cells.Thus our results suggest that normotopic granule cells born after pilocarpine-induced SE are no more active when mature than age-matched, naturally born granule cells

    Expression of a codon-optimized dsdA gene in tobacco plastids and rice nuclear confers D-serine tolerance

    Get PDF
    D-serine is toxic to plants. D-serine ammonia lyase, which is encoded by the dsdA gene, can attenuate this toxicity with high specificity. In the present study, we explored the function of codon-optimized dsdA with tobacco plastids and rice nuclear transformation system. It was shown that the dsdA gene was site-specifically integrated into the tobacco chloroplast genome and displayed a high level of expression. Genetic analysis of the progenies showed that the dsdA gene is maternally inherited and confers sufficient D-serine resistance in tobacco. The effective screening concentrations of D-serine for seed germination, callus regeneration and foliar spray were 10 mM, 30 mM and 75 mM, respectively. In addition, calluses from homozygous transgenic rice lines also showed significant tolerance to D-serine (up to 75 mM). Our study proves the feasibility of using dsdA gene as a selectable marker in both chloroplast and nuclear transformation systems
    corecore