7,717 research outputs found
The Oblique Orbit of WASP-107b from K2 Photometry
Observations of nine transits of WASP-107 during the {\it K2} mission reveal
three separate occasions when the planet crossed in front of a starspot. The
data confirm the stellar rotation period to be 17 days --- approximately three
times the planet's orbital period --- and suggest that large spots persist for
at least one full rotation. If the star had a low obliquity, at least two
additional spot crossings should have been observed. They were not observed,
giving evidence for a high obliquity. We use a simple geometric model to show
that the obliquity is likely in the range 40-140, i.e., both spin-orbit
alignment and anti-alignment can be ruled out. WASP-107 thereby joins the small
collection of relatively low-mass stars hosting a giant planet with a high
obliquity. Most such stars have been observed to have low obliquities; all the
exceptions, including WASP-107, involve planets with relatively wide orbits
("warm Jupiters", with ). This demonstrates a
connection between stellar obliquity and planet properties, in contradiction to
some theories for obliquity excitation.Comment: Submitted to AAS journal
Polyoxometalate (POM)-layered double hydroxides (LDH) composite materials: design and catalytic applications
Layered double hydroxides (LDHs) are an important large class of two-dimensional (2D) anionic lamellar materials that possess flexible modular structure, facile exchangeability of inter-lamellar guest anions and uniform distribution of metal cations in the layer. Owing to the modular accessible gallery and unique inter-lamellar chemical environment, polyoxometalates (POMs) intercalated with LDHs has shown a vast array of physical properties with applications in environment, energy, catalysis, etc. Here we describe how polyoxometalate clusters can be used as building components for the construction of systems with important catalytic properties. This review article mainly focuses on the discussion of new synthetic approaches developed recently that allow the incorporation of the element of design in the construction of a fundamentally new class of materials with pre-defined functionalities in catalytic applications. Introducing the element of design and taking control over the finally observed functionality we demonstrate the unique opportunity for engineering materials with modular properties for specific catalytic applications
A Review of Pentaquark Calculations on the Lattice
We review lattice calculations of pentaquarks and discuss issues pertaining
to interpolation fields, distinguishing the signal of pentaquarks from those of
the KN scattering states, chiral symmetry, and ghost state contaminations.Comment: Talk at International Conference on QCD and Hadronic Physics, 8
pages, 3 figure
Generalized Second-Order Thomas-Fermi Method for Superfluid Fermi Systems
Using the -expansion of the Green's function of the
Hartree-Fock-Bogoliubov equation, we extend the second-order Thomas-Fermi
approximation to generalized superfluid Fermi systems by including the
density-dependent effective mass and the spin-orbit potential. We first
implement and examine the full correction terms over different energy intervals
of the quasiparticle spectra in calculations of finite nuclei. Final
applications of this generalized Thomas-Fermi method are intended for various
inhomogeneous superfluid Fermi systems.Comment: 8 pages, 10 figures, PR
Modular polyoxometalate-layered double hydroxide composites as efficient oxidative catalysts
The exploitation of intercalation techniques in the field of two-dimensional layered materials offers unique opportunities for controlling chemical reactions in confined spaces and developing nanocomposites with desired functionality. In this paper, we demonstrate the exploitation of the novel and facile ‘one-pot’ anion-exchange method for the functionalization of layered double hydroxides (LDHs). As a proof of concept, we demonstrate the intercalation of a series of polyoxometalate (POM) clusters, Na3[PW12O40]•15H2O (Na3PW12), K6[P2W18O62]•14H2O (K6P2W18), and Na9LaW10O36•32H2O (Na9LaW10) into tris(hydroxymethyl)amino-methane (Tris) modified layered double hydroxides (LDHs) under ambient conditions without the necessity of degassing CO2. Investigation of the resultant intercalated materials of Tris-LDHs-PW12 (1), Tris-LDH-P2W18 (2), and Tris-LDH-LaW10 (3) for the degradation of methylene blue (MB), rhodamine B (RB) and crystal violet (CV) has been carried out, where Tris-LDH-PW12 reveals the best performance in the presence of H2O2. Additionally, degradation of a mixture of RB, MB and CV by Tris-LDH-PW12 follows the order of CV > MB > RB, which is directly related to the designed accessible area of the interlayer space. Also, the composite can be readily recycled and reused at least ten cycles without measurable decrease of activity
Rational design of a polyoxometalate intercalated layered double hydroxide: highly efficient catalytic epoxidation of allylic alcohols under mild and solvent-free conditions
Intercalation catalysts, owing to their modular and accessible gallery and unique interlamellar chemical environment, have shown wide application in various catalytic reactions. However, the poor mass transfer between the active components of the intercalated catalysts and organic substrates is one of the challenges that limit their further application. Herein, we have developed a novel heterogeneous catalyst by intercalating the polyoxometalate (POM) of Na9LaW10O36⋅32 H2O (LaW10) into layered double hydroxides (LDHs), which have been covalently modified with ionic liquids (ILs). The intercalation catalyst demonstrates high activity and selectivity for the epoxidation of various allylic alcohols in the presence of H2O2. For example, trans-2-hexen-1-ol undergoes up to 96 % conversion and 99 % epoxide selectivity at 25 °C in 2.5 h. To the best of our knowledge, the Mg3Al−ILs−C8−LaW10 composite material constitutes one of the most efficient heterogeneous catalysts for the epoxidation of allylic alcohols (including the hydrophobic allylic alcohols with long alkyl chains) reported so far
On the Survivability and Metamorphism of Tidally Disrupted Giant Planets: the Role of Dense Cores
A large population of planetary candidates in short-period orbits have been
found through transit searches. Radial velocity surveys have also revealed
several Jupiter-mass planets with highly eccentric orbits. Measurements of the
Rossiter-McLaughlin effect indicate some misaligned planetary systems. This
diversity could be induced by post-formation dynamical processes such as
planet-planet scattering, the Kozai effect, or secular chaos which brings
planets to the vicinity of their host stars. In this work, we propose a novel
mechanism to form close-in super-Earths and Neptune-like planets through the
tidal disruption of giant planets as a consequence of these dynamical
processes. We model the core-envelope structure of giant planets with composite
polytropes. Using three-dimensional hydrodynamical simulations of close
encounters between planets and their host stars, we find that the presence of a
core with a mass more than ten Earth masses can significantly increase the
fraction of envelope which remains bound to it. After the encounter, planets
with cores are more likely to be retained by their host stars in contrast with
previous studies which suggested that coreless planets are often ejected. As a
substantial fraction of their gaseous envelopes is preferentially lost while
the dense incompressible cores retain most of their original mass, the
resulting metallicity of the surviving planets is increased. Our results
suggest that some gas giant planets can be effectively transformed into either
super-Earths or Neptune-like planets after multiple close stellar passages.
Finally, we analyze the orbits and structure of known planets and Kepler
candidates and find that our model is capable producing some of the
shortest-period objects.Comment: Accepted for publication in ApJ. 15 pages, 9 figures, 3 tables. Two
movies at http://youtu.be/jHxPKAEgFic and http://youtu.be/QXqkS0vDi5
- …