2 research outputs found

    Quantifying allo-grooming in wild chacma baboons (Papio ursinus) using tri-axial acceleration data and machine learning

    Get PDF
    Quantification of activity budgets is pivotal for understanding how animals respond to changes in their environment. Social grooming is a key activity that underpins various social processes with consequences for health and fitness. Traditional methods use direct (focal) observations to calculate grooming rates, providing systematic but sparse data. Accelerometers, in contrast, can quantify activity budgets continuously but have not been used to quantify social grooming. We test whether grooming can be accurately identified using machine learning (random forest model) trained on labelled acceleration data from wild chacma baboons (Papio ursinus). We successfully identified giving and receiving grooming with high precision (81% and 91%) and recall (87% and 79%). Giving grooming was associated with a distinct rhythmical signal along the surge axis. Receiving grooming had similar acceleration signals to resting, and thus was more difficult to assign. We applied our machine learning model to n = 680 collar data days from n = 12 baboons and found that grooming rates obtained from accelerometers were significantly and positively correlated with direct observation rates for giving but not receiving grooming. The ability to collect continuous grooming data in wild populations will allow researchers to re-examine and expand upon long-standing questions regarding the formation and function of grooming bonds

    Socioecology explains individual variation in urban space use in response to management in Cape Chacma baboons (Papio ursinus)

    Get PDF
    The presence of wildlife adjacent to and within urban spaces is a growing phenomenon globally. When wildlife’s presence in urban spaces has negative impacts for people and wildlife, nonlethal and lethal interventions on animals invariably result. Recent evidence suggests that individuals in wild animal populations vary in both their propensity to use urban space and their response to nonlethal management methods. Understanding such interindividual differences and the drivers of urban space use could help inform management strategies. We use direct observation and high-resolution GPS (1 Hz) to track the space use of 13 adult individuals in a group of chacma baboons (Papio ursinus) living at the urban edge in Cape Town, South Africa. The group is managed by a dedicated team of field rangers, who use aversive conditioning to reduce the time spent by the group in urban spaces. Adult males are larger, more assertive, and more inclined to enter houses, and as such are disproportionately subject to “last resort” lethal management. Field rangers therefore focus efforts on curbing the movements of adult males, which, together with high-ranking females and their offspring, comprise the bulk of the group. However, our results reveal that this focus allows low-ranking, socially peripheral female baboons greater access to urban spaces. We suggest that movement of these females into urban spaces, alone or in small groups, is an adaptive response to management interventions, especially given that they have no natural predators. These results highlight the importance of conducting behavioral studies in conjunction with wildlife management, to ensure effective mitigation techniques
    corecore