112 research outputs found

    The tumour suppressor SOX11 is associated with improved survival among high grade epithelial ovarian cancers and is regulated by reversible promoter methylation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The neural transcription factor SOX11 has been described as a prognostic marker in epithelial ovarian cancers (EOC), however its role in individual histological subtypes and tumour grade requires further clarification. Furthermore, methylation-dependent silencing of SOX11 has been reported for B cell lymphomas and indicates that epigenetic drugs may be used to re-express this tumour suppressor, but information on SOX11 promoter methylation in EOC is still lacking.</p> <p>Methods</p> <p>SOX11 expression and clinicopathological data was compared using χ<sup>2 </sup>test in a cohort of 154 cases of primary invasive EOC. Kaplan-Meier analysis and the log rank test were applied to evaluate ovarian cancer-specific survival (OCSS) and overall survival (OS) in strata, according to SOX11 expression. Also, the methylation status of the SOX11 promoter was determined by sodium bisulfite sequencing and methylation specific PCR (MSP). Furthermore, the effect of ectopic overexpression of SOX11 on proliferation was studied through [3H]-thymidine incorporation.</p> <p>Results</p> <p>SOX11 expression was associated with an improved survival of patients with high grade EOC, although not independent of stage. Further analyses of EOC cell lines showed that SOX11 mRNA and protein were expressed in two of five cell lines, correlating with promoter methylation status. Demethylation was successfully performed using 5'-Aza-2'deoxycytidine (5-Aza-dC) resulting in SOX11 mRNA and protein expression in a previously negative EOC cell line. Furthermore, overexpression of SOX11 in EOC cell lines confirmed the growth regulatory role of SOX11.</p> <p>Conclusions</p> <p>SOX11 is a functionally associated protein in EOC with prognostic value for high-grade tumours. Re-expression of SOX11 in EOC indicates a potential use of epigenetic drugs to affect cellular growth in SOX11-negative tumours.</p

    Erlotinib inhibits osteolytic bone invasion of human non-small-cell lung cancer cell line NCI-H292

    Get PDF
    Previous preclinical and clinical findings have suggested a potential role of epidermal growth factor receptor (EGFR) in osteoclast differentiation and the pathogenesis of bone metastasis in cancer. In this study, we investigated the effect of erlotinib, an orally active EGFR tyrosine kinase inhibitor (TKI), on the bone invasion of human non-small-cell lung cancer (NSCLC) cell line NCI-H292. First, we established a novel osteolytic bone invasion model of NCI-H292 cells which was made by inoculating cancer cells into the tibia of scid mice. In this model, NCI-H292 cells markedly activated osteoclasts in tibia, which resulted in osteolytic bone destruction. Erlotinib treatment suppressed osteoclast activation to the basal level through suppressing receptor activator of NF-κB ligand (RANKL) expression in osteoblast/stromal cell at the bone metastatic sites, which leads to inhibition of osteolytic bone destruction caused by NCI-H292 cells. Erlotinib inhibited the proliferation of NCI-H292 cells in in vitro. Erlotinib suppressed the production of osteolytic factors, such as parathyroid hormone-related protein (PTHrP), IL-8, IL-11 and vascular endothelial growth factor (VEGF) in NCI-H292 cells. Furthermore, erlotinib also inhibited osteoblast/stromal cell proliferation in vitro and the development of osteoclasts induced by RANKL in vitro. In conclusion, erlotinib inhibits tumor-induced osteolytic invasion in bone metastasis by suppressing osteoclast activation through inhibiting tumor growth at the bone metastatic sites, osteolytic factor production in tumor cells, osteoblast/stromal cell proliferation and osteoclast differentiation from mouse bone marrow cells

    Understanding missed opportunities for more timely diagnosis of cancer in symptomatic patients after presentation.

    Get PDF
    The diagnosis of cancer is a complex, multi-step process. In this paper, we highlight factors involved in missed opportunities to diagnose cancer more promptly in symptomatic patients and discuss responsible mechanisms and potential strategies to shorten intervals from presentation to diagnosis. Missed opportunities are instances in which post-hoc judgement indicates that alternative decisions or actions could have led to more timely diagnosis. They can occur in any of the three phases of the diagnostic process (initial diagnostic assessment; diagnostic test performance and interpretation; and diagnostic follow-up and coordination) and can involve patient, doctor/care team, and health-care system factors, often in combination. In this perspective article, we consider epidemiological 'signals' suggestive of missed opportunities and draw on evidence from retrospective case reviews of cancer patient cohorts to summarise factors that contribute to missed opportunities. Multi-disciplinary research targeting such factors is important to shorten diagnostic intervals post presentation. Insights from the fields of organisational and cognitive psychology, human factors science and informatics can be extremely valuable in this emerging research agenda. We provide a conceptual foundation for the development of future interventions to minimise the occurrence of missed opportunities in cancer diagnosis, enriching current approaches that chiefly focus on clinical decision support or on widening access to investigations.We acknowledge the helpful and incisive comments by Dr Rikke Sand Andersen (Aarhus University, Denmark) in conceptualising this piece and in drafts of the manuscript. The work is independent research supported by different funding schemes. GL was supported by a Post-Doctoral Fellowship by the National Institute for Health Research (PDF-2011-04-047) until the end of 2014 and by a Cancer Research UK Clinician Scientist Fellowship award (A18180) from 2015. HS is supported by the VA Health Services Research and Development Service (CRE 12-033; Presidential Early Career Award for Scientists and Engineers USA 14-274), the VA National Center for Patient Safety, the Agency for Health Care Research and Quality (R01HS022087) and in part by the Houston VA HSR&D Center for Innovations in Quality, Effectiveness and Safety (CIN 13–413). PV was supported by CaP, funded by The Danish Cancer Society and the Novo Nordisk Foundation.This is the final version of the article. It first appeared at http://dx.doi.org/10.1038/bjc.2015.4

    RANK, RANKL and osteoprotegerin in bone biology and disease

    Get PDF
    Upon the discovery of RANK, RANKL and OPG in the late 1990s, their importance in the maintenance of the skeletal structure and their dramatic role in bone disease were largely unexpected. In recent years the understanding of these proteins, in particular their regulation, has greatly increased. This review aims to bring the interested reader up to date with the latest news and views on the mechanisms controlling bone resorption in normal and pathological conditions

    The Role of the BMP Signaling Antagonist Noggin in the Development of Prostate Cancer Osteolytic Bone Metastasis

    Get PDF
    Members of the BMP and Wnt protein families play a relevant role in physiologic and pathologic bone turnover. Extracellular antagonists are crucial for the modulation of their activity. Lack of expression of the BMP antagonist noggin by osteoinductive, carcinoma-derived cell lines is a determinant of the osteoblast response induced by their bone metastases. In contrast, osteolytic, carcinoma-derived cell lines express noggin constitutively. We hypothesized that cancer cell-derived noggin may contribute to the pathogenesis of osteolytic bone metastasis of solid cancers by repressing bone formation. Intra-osseous xenografts of PC-3 prostate cancer cells induced osteolytic lesions characterized not only by enhanced osteoclast-mediated bone resorption, but also by decreased osteoblast-mediated bone formation. Therefore, in this model, uncoupling of the bone remodeling process contributes to osteolysis. Bone formation was preserved in the osteolytic lesions induced by noggin-silenced PC-3 cells, suggesting that cancer cell-derived noggin interferes with physiologic bone coupling. Furthermore, intra-osseous tumor growth of noggin-silenced PC-3 cells was limited, most probably as a result of the persisting osteoblast activity. This investigation provides new evidence for a model of osteolytic bone metastasis where constitutive secretion of noggin by cancer cells mediates inhibition of bone formation, thereby preventing repair of osteolytic lesions generated by an excess of osteoclast-mediated bone resorption. Therefore, noggin suppression may be a novel strategy for the treatment of osteolytic bone metastases

    The Effect of Nordic Hamstring Strength Training on Muscle Architecture, Stiffness, and Strength

    Get PDF
    Purpose: Hamstring strain injury is a frequent and serious injury in competitive and recreational sports. While Nordic hamstring (NH) eccentric strength training is an effective hamstring injury prevention method, the protective mechanism of this exercise is not understood. Strength training increases muscle strength, but also alters muscle architecture and stiffness; all three factors may be associated with reducing muscle injuries. The purpose of this study was to examine the effects of NH eccentric strength training on hamstring muscle architecture, stiffness, and strength. Methods: Twenty healthy participants were randomly assigned to an eccentric training group or control group. Control participants performed static stretching, while experimental participants performed static stretching and NH training for 6 weeks. Pre- and post-intervention measurements included: hamstring muscle architecture and stiffness using ultrasound imaging and elastography, and maximal hamstring strength measured on a dynamometer. Results: The experimental group, but not the control group, increased volume (131.5 vs. 145.2 cm3, p\u3c0.001) and physiological cross-sectional area (16.1 vs. 18.1 cm2, p=0.032). There were no significant changes to muscle fascicle length, stiffness, or eccentric hamstring strength. Conclusions: The NH intervention was an effective training method for muscle hypertrophy, but, contrary to common literature findings for other modes of eccentric training, did not increase fascicle length. The data suggest the mechanism behind NH eccentric strength training mitigating hamstring injury risk could be increasing volume rather than increasing muscle length. Future research is therefore warranted to determine if muscle hypertrophy induced by NH training lowers future hamstring strain injury risk
    corecore