6 research outputs found
Low diversity of a key phytoplankton group along the West Antarctic Peninsula
The West Antarctic Peninsula (henceforth “Peninsula”) is experiencing rapid warming and melting that is impacting the regional marine food web. The primary phytoplankton groups along the Peninsula are diatoms and cryptophytes. Relative to diatoms, there has been little focus on regional cryptophytes, and thus our understanding of their diversity and ecology is limited, especially at the species level. This gap is important, as diatoms and cryptophytes play distinct roles in the regional marine food web and biogeochemistry. Here, we use a phylogenetic placement approach with 18S rRNA gene amplicon sequence variants to assess surface ocean cryptophyte diversity and its drivers at a high taxonomic resolution along the Peninsula. Data were collected over 5 years (2012–2016) during the regional research cruises of the Palmer Long-Term Ecological Research program. Our results indicate that there are two major cryptophyte taxa along the Peninsula, consisting of distinct Geminigera spp., which in aggregate always comprise nearly 100% of the cryptophyte community (indicating low taxa evenness). The primary taxon dominates the cryptophyte community across all samples/years, which span a broad range of oceanographic conditions. A shift in cryptophyte community composition between a lower (higher) primary (secondary) taxon percentage is associated with distinct oceanographic conditions, including lower (higher) temperature, salinity, nutrients, and cryptophyte relative abundance (phytoplankton biomass and diatom relative abundance). These results emphasize the need for a full characterization of the ecology of these two taxa, as it is predicted that cryptophytes will increase along the Peninsula given projections of continued regional environmental change
Low diversity of a key phytoplankton group along the West Antarctic Peninsula
The West Antarctic Peninsula (henceforth “Peninsula”) is experiencing rapid warming and melting that is impacting the regional marine food web. The primary phytoplankton groups along the Peninsula are diatoms and cryptophytes. Relative to diatoms, there has been little focus on regional cryptophytes, and thus our understanding of their diversity and ecology is limited, especially at the species level. This gap is important, as diatoms and cryptophytes play distinct roles in the regional marine food web and biogeochemistry. Here, we use a phylogenetic placement approach with 18S rRNA gene amplicon sequence variants to assess surface ocean cryptophyte diversity and its drivers at a high taxonomic resolution along the Peninsula. Data were collected over 5 years (2012–2016) during the regional research cruises of the Palmer Long-Term Ecological Research program. Our results indicate that there are two major cryptophyte taxa along the Peninsula, consisting of distinct Geminigera spp., which in aggregate always comprise nearly 100% of the cryptophyte community (indicating low taxa evenness). The primary taxon dominates the cryptophyte community across all samples/years, which span a broad range of oceanographic conditions. A shift in cryptophyte community composition between a lower (higher) primary (secondary) taxon percentage is associated with distinct oceanographic conditions, including lower (higher) temperature, salinity, nutrients, and cryptophyte relative abundance (phytoplankton biomass and diatom relative abundance). These results emphasize the need for a full characterization of the ecology of these two taxa, as it is predicted that cryptophytes will increase along the Peninsula given projections of continued regional environmental change
Marine heatwaves and the collaps of marginal North Atlantic kelp forests.
Extreme climatic events including marine heatwaves (MHWs) are becoming more frequent and severe in the Anthropocene. However, our understanding of how these events affect population dynamics of ecologically important species is limited, in part because extreme events are rare and difficult to predict. Here, we quantified the occurrence and severity of MHWs over 60 years in warm range edge kelp forests on both sides of the North Atlantic. The cumulative annual intensity of MHWs increased two- to four-fold during this period, coinciding with the disappearance of kelps. We experimentally demonstrated a relationship between strong and severe 2018 heatwaves and high kelp mortality in both regions. Patterns of kelp mortality were strongly linked to maximum temperature anomalies, which crossed lethal thresholds in both regions. Translocation and tagging experiments revealed similar kelp mortality rates on reefs dominated by healthy kelp forests and degraded sediment-laden algal ‘turfs’, indicating equal vulnerability to extreme events. These results suggest a mechanistic link between MHWs and broad-scale kelp loss, and highlight how warming can make ecosystem boundaries unstable, forcing shifts to undesirable ecosystem states under episodically extreme climatic conditions