2,901 research outputs found

    On the kinetic equation approach to pair production by time-dependent electric field

    Get PDF
    We investigate the quantum kinetic approach to pair production from vacuum by time-dependent electric field. Equivalence between this approach and the more familiar S-matrix approach is explicitly established for both scalar and fermion cases. For the particular case of a constant electric field exact solution for kinetic equations is provided and the accuracy of low-density approximation is estimated.Comment: 8 pages, 4 figure

    Electroexcitation of nucleon resonances at Q^2=0.65 GeV/c^2 from a combined analysis of single- and double-pion electroproduction data

    Full text link
    Data on single- and double-charged pion electroproduction off protons are successfully described in the second and third nucleon resonance regions with common N* photocouplings. The analysis was carried out using separate isobar models for both reactions. From the combined analysis of two exclusive channels, the gamma* p --> N*+ helicity amplitudes are obtained for the resonances P11(1440), D13(1520), S31(1620), S11(1650), F15(1680), D33(1700), D13(1700), and P13(1720) at Q2=0.65 GeV/c^2.Comment: 12 pages, 12 figures (eps), Published in PHYSICAL REVIEW C 72, 045201 (2005

    Model Analysis of the epepπ+πep \to ep'\pi^+\pi^- Electroproduction Reaction on the Proton

    Full text link
    Recent CLAS data on the pπ+πp\pi^+\pi^- electroproduction off protons at 1.3<<W<<1.57 GeV and 0.25<<Q2Q^{2}<<0.6 GeV2^{2} have been analyzed using a meson-baryon phenomenological model. By fitting nine 1-fold differential cross section data for each WW and Q2Q^{2} bin, the charged double pion electroproduction mechanisms are identified from their manifestations in the observables. We have extracted the cross sections from amplitudes of each of the considered isobar channels as well as from their coherent sum. We also obtained non-resonant partial wave amplitudes of all contributing isobar channels which could be useful for advancing a complete coupled-channel analysis of all meson electroproduction data.Comment: Experiment Numbers: E93-006, E94-005 Group: Hall

    Phenomenological analysis of the CLAS data on double charged pion photo and electro- production

    Full text link
    First comprehensive data on the evolution of nucleon resonance photocouplings with photon virtuality Q^2 are presented for excited proton states in the mass range from 1.4 to 2.0 GeV. N^* photocouplings were determined in phenomenological analysis of CLAS data on 2 pi photo and electroproduction within the framework of the JLAB-MSU phenomenological model.Comment: 10 pages, 7 figures (encapsulated postscript

    Consistent alpha-cluster description of the 12C (0^+_2) resonance

    Full text link
    The near-threshold 12C (0^+_2) resonance provides unique possibility for fast helium burning in stars, as predicted by Hoyle to explain the observed abundance of elements in the Universe. Properties of this resonance are calculated within the framework of the alpha-cluster model whose two-body and three-body effective potentials are tuned to describe the alpha - alpha scattering data, the energies of the 0^+_1 and 0^+_2 states, and the 0^+_1-state root-mean-square radius. The extremely small width of the 0^+_2 state, the 0_2^+ to 0_1^+ monopole transition matrix element, and transition radius are found in remarkable agreement with the experimental data. The 0^+_2-state structure is described as a system of three alpha-particles oscillating between the ground-state-like configuration and the elongated chain configuration whose probability exceeds 0.9

    Electromagnetic wave diffraction by periodic planar metamaterials with nonlinear constituents

    Full text link
    We present a theory which explains how to achieve an enhancement of nonlinear effects in a thin layer of nonlinear medium by involving a planar periodic structure specially designed to bear a trapped-mode resonant regime. In particular, the possibility of a nonlinear thin metamaterial to produce the bistable response at a relatively low input intensity due to a large quality factor of the trapped-mode resonance is shown. Also a simple design of an all-dielectric low-loss silicon-based planar metamaterial which can provide an extremely sharp resonant reflection and transmission is proposed. The designed metamaterial is envisioned for aggregating with a pumped active medium to achieve an enhancement of quantum dots luminescence and to produce an all-dielectric analog of a 'lasing spaser'.Comment: 18 pages, 13 figure

    On the kinetic equation approach to pair production by time-dependent electric field

    Full text link
    We investigate the quantum kinetic approach to pair production from vacuum by time-dependent electric field. Equivalence between this approach and the more familiar S-matrix approach is explicitly established for both scalar and fermion cases. For the particular case of a constant electric field exact solution for kinetic equations is provided and the accuracy of low-density approximation is estimated.Comment: 8 pages, 4 figure
    corecore