30 research outputs found

    Studies of enrichment of sulfide and oxidized ores of gold deposits of the Aldan shield

    Get PDF
    The paper presents the analysis of studies of the enrichment of sulfide and oxidized ores in Yakutia deposits. The ore of the deposit is a mixture of primary, mixed and oxidized ores. The main useful component of the studied ore samples is gold with a content of 1.5 to 2.8 g/t, the silver content is low – 5-17 g/t. Ore minerals are represented by sulfides, among which pyrite predominates. The total sulfide content does not exceed 3-5 %. The presence in the ore of free and associated gold with a grain size from fractions of a micron to 1.5 mm. Gold is represented by nuggets in intergrowth with sulfides and also forms independent inclusions. Ores are classified as easily cyanidable. It was found that the content of amalgamable gold is 10-49, the share of cyanidable gold ranges from 66.67-91, the share of refractory gold is 9.0-33.33 %, which in absolute amount equals to 0.24-0.8 g/t. The extraction of gold in gravitation concentrate varies depending on the gold content in the ore and the yield of concentrate and for ores with a gold content of 1.5-2.8 g/t from 40 to 60 %. The direct cyanidation of all studied ore samples established the possibility of extracting gold into solution up to 86.7-92.9 %, the gold content in cyanidation cakes is 0.2-0.3 g/t. Investigations of the gravitation concentrate by the method of intensive cyanidation showed that with an initial gold content of ~ 500 g/t, up to 98.9 % is extracted into the solution. The gold content in intensive cyanide cakes will be 6-15 g/t. A set of studies carried out by the authors of the article at various institutes showed that it is advisable to process ore from the deposit using cyanidation technology with preliminary gravitational extraction of gold

    Proof-of-Principle Experiment for FEL-Based Coherent Electron Cooling,”

    Get PDF
    Abstract Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, highintensity hadron-hadron and electron-hadron colliders. In a CEC system, a hadron beam interacts with a cooling electron beam. A perturbation of the electron density caused by ions is amplified and fed back to the ions to reduce the energy spread and the emittance of the ion beam. To demonstrate the feasibility of CEC we propose a proof-of-principle experiment at RHIC using SRF linac. In this paper, we describe the setup for CeC installed into one of RHIC's interaction regions. We present results of analytical estimates and results of initial simulations of cooling a gold-ion beam at 40 GeV/u energy via CeC

    2-Furyl-6-nitro-1,2,4-triazolo [1,5-a]pyrimidin-7-one

    No full text
    A sodium salt of 2-(fur-2-yl)-6-nitro-1,2,4-triazolo[1,5-a]pyrimidin-7-one as a close structural analogue of ZM-241385 was obtained. This heterocycle can serve as an effector for A2a adenosine receptors and possesses antiseptic activity. The structures of compounds were confirmed based on the data of 1H, 13C NMR spectroscopy, IR spectroscopy, and an elemental analysis. The structure of sodium salt 2-furyl-6-nitro-1,2,4-triazolo[1,5-a]pyrimidin-7-one was confirmed by an X-ray diffraction analysis

    Optical magnetic mirror

    No full text
    We report demonstration of an optical magnetic mirror achieved by nanostructuring a metal surface. In contrast to normal mirrors, it inflicts only small change to the phase of a reflected wave, offering intriguing applications

    Influence of Swift Heavy Ions on Electric and Magnetotransport

    No full text
    Секция 3. Модификация свойств материалов = Section 3. Modification of Material PropertiesIn the present paper we report about the influence of Swift Heavy Ions (SHI) irradiation on the electric and magnetotransport in the antimony (Sb) δ-layer in silicon. Temperature and magnetic field dependences of the sheet resistance R(T, B) in the temperature range 2 < T < 300 K and magnetic field induction B up to 8 T before and after the 167 MeV Xe+26 ion irradiation with ion fluences since 1×10 8 cm-2 to 5×10 10 cm-2 were measured. It was detected strong role of quantum corrections on low-temperature R(T, B)

    Magnetic mirror on optical frequency

    No full text
    We report demonstration of an optical magnetic mirror achieved by nanostructuring a metal surface. In contrast to normal mirrors, it inflicts only small change to the phase of a reflected wave, offering intriguing applications.<br/

    Magnetic nanoribbons with embedded cobalt grown inside single-walled carbon nanotubes

    No full text
    Molecular magnetism and specifically magnetic molecules have recently gained plenty of attention as key elements for quantum technologies, information processing, and spintronics. Transition to the nanoscale and implementation of ordered structures with defined parameters is crucial for advanced applications. Single-walled carbon nanotubes (SWCNTs) provide natural one-dimensional confinement that can be implemented for encapsulation, nanosynthesis, and polymerization of molecules into nanoribbons. Recently, the formation of atomically precise graphene nanoribbons inside SWCNTs has been reported. However, there have been only a limited amount of approaches to form ordered magnetic structures inside the nanotube channels and the creation of magnetic nanoribbons is still lacking. In this work we synthesize and reveal the properties of cobalt-phthalocyanine based nanoribbons (CoPcNRs) encapsulated in SWCNTs. Raman spectroscopy, transmission electron microscopy, absorption spectroscopy, and density functional theory calculations allowed us to confirm the encapsulation and to reveal the specific fingerprints of CoPcNRs. The magnetic properties were studied by transverse magnetooptical Kerr effect measurements, which indicated a strong difference in comparison with the pristine unfilled SWCNTs due to the impact of Co incorporated atoms. We anticipate that this approach of polymerization of encapsulated magnetic molecules inside SWCNTs will result in a diverse class of protected low-dimensional ordered magnetic materials for various applications

    Direct Nanoscale Visualization of the Electric-Field-Induced Aging Dynamics of MAPbI<sub>3</sub> Thin Films

    No full text
    Perovskite solar cells represent the most attractive emerging photovoltaic technology, but their practical implementation is limited by solar cell devices’ low levels of operational stability. The electric field represents one of the key stress factors leading to the fast degradation of perovskite solar cells. To mitigate this issue, one must gain a deep mechanistic understanding of the perovskite aging pathways associated with the action of the electric field. Since degradation processes are spatially heterogeneous, the behaviors of perovskite films under an applied electric field should be visualized with nanoscale resolution. Herein, we report a direct nanoscale visualization of methylammonium (MA+) cation dynamics in methylammonium lead iodide (MAPbI3) films during field-induced degradation, using infrared scattering-type scanning near-field microscopy (IR s-SNOM). The obtained data reveal that the major aging pathways are related to the anodic oxidation of I− and the cathodic reduction of MA+, which finally result in the depletion of organic species in the channel of the device and the formation of Pb. This conclusion was supported by a set of complementary techniques such as time-of-flight secondary ion mass spectrometry (ToF-SIMS), photoluminescence (PL) microscopy, scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) microanalysis. The obtained results demonstrate that IR s-SNOM represents a powerful technique for studying the spatially resolved field-induced degradation dynamics of hybrid perovskite absorbers and the identification of more promising materials resistant to the electric field

    In vivo dynamics of acidosis and oxidative stress in the acute phase of an ischemic stroke in a rodent model

    Get PDF
    Ischemic cerebral stroke is one of the leading causes of death and disability in humans. However, molecular processes underlying the development of this pathology remain poorly understood. There are major gaps in our understanding of metabolic changes that occur in the brain tissue during the early stages of ischemia and reperfusion. In particular, it is generally accepted that both ischemia (I) and reperfusion (R) generate reactive oxygen species (ROS) that cause oxidative stress which is one of the main drivers of the pathology, although ROS generation during I/R was never demonstrated in vivo due to the lack of suitable methods. In the present study, we record for the first time the dynamics of intracellular pH and H2O2 during I/R in cultured neurons and during experimental stroke in rats using the latest generation of genetically encoded biosensors SypHer3s and HyPer7. We detect a buildup of powerful acidosis in the brain tissue that overlaps with the ischemic core from the first seconds of pathogenesis. At the same time, no significant H2O2 generation was found in the acute phase of ischemia/reperfusion. HyPer7 oxidation in the brain was detected only 24 h later. Comparison of in vivo experiments with studies on cultured neurons under I/R demonstrates that the dynamics of metabolic processes in these models significantly differ, suggesting that a cell culture is a poor predictor of metabolic events in vivo
    corecore