328 research outputs found

    Measurement of the neutron electric dipole moment by crystal diffraction

    Full text link
    An experiment using a prototype setup to search for the neutron electric dipole moment by measuring spin-rotation in a non-centrosymmetric crystal (quartz) was carried out to investigate statistical sensitivity and systematic effects of the method. It has been demonstrated that the concept of the method works. The preliminary result of the experiment is dn=(2.5Β±6.5)β‹…10βˆ’24d_{\rm n}=(2.5\pm 6.5)\cdot 10^{-24} eβ‹…\cdot cm. The experiment showed that an accuracy of ∼2.5β‹…10βˆ’26\sim 2.5\cdot 10^{-26} eβ‹…\cdot cm can be obtained in 100 days data taking, using available quartz crystals and neutron beams.Comment: 13 pages, 4 figure

    Measurement of the neutron electric dipole moment via spin rotation in a non-centrosymmetric crystal

    Full text link
    We have measured the neutron electric dipole moment using spin rotation in a non-centrosymmetric crystal. Our result is d_n = (2.5 +- 6.5(stat) +- 5.5(syst)) 10^{-24} e cm. The dominating contribution to the systematic uncertainty is statistical in nature and will reduce with improved statistics. The statistical sensitivity can be increased to 2 10^{-26} e cm in 100 days data taking with an improved setup. We state technical requirements for a systematic uncertainty at the same level.Comment: submitted to Phys. Lett.

    Polaritons in a nonideal array of ultracold quantum dots

    Full text link
    We develop a numerical model for a defect-containing square lattice of microcavities with embedded ultracold atomic clusters (quantum dots). It is assumed that certain fractions of quantum dots and cavities are absent, which leads to transformation of polariton spectrum of the overall structure. The dispersion relations for polaritonic modes are derived as functions of defect concentrations and on this basis the band gap, the effective masses of lower and upper dispersion branch polaritons as well as their densities of states are evaluated

    Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ активности литичСского стафилококкового Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π° ph20 ΠΈ литичСского Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π° синСгнойной ΠΏΠ°Π»ΠΎΡ‡ΠΊΠΈ ph57 ΠΏΡ€ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΈΡ… ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ†ΠΈΠΈ Π² ортопСдичСскиС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Π΅ конструкции ΠΈΠ· ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π° (костного Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π°)

    Get PDF
    Background: The problem of bacterial colonization of implants used in medical practice continues to be relevant regardless of the material of the implant. Particular attention deserves polymeric implants, which are prepared ex tempore from polymethyl methacrylate, for example - duting orthopedic surgical interventions (so-called "bone cement"). The protection of such implants by antibiotic impregnation is subjected to multiple criticisms, therefore, as an alternative to antibiotics, lytic bacteriophages with a number of unique advantages can be used - however, no experimental studies have been published on the possibility of impregnating bacteriophages into polymethyl methacrylate and their antibacterial activity assessment under such conditions.Aims: to evaluate the possibility of physical placement of bacteriophages in polymethylmethacrylate and to characterize the lytic antibacterial effect of two different strains of bacteriophages when impregnated into polymer carrier ex tempore during the polymerization process in in vitro model.Materials and methods: Β First stage - Atomic force microscopy (AFM) of polymethyl methacrylate samples for medical purposes was used to determine the presence and size of caverns in polymethyl methacrylate after completion of its polymerization at various reaction Β temperatures (+6…+25Β°C and +18…+50Β°C).The second stage was performed in vitro and included an impregnation of two different bacteriophage strains (phage ph20 active against S. aureus and ph57 active against Ps. aeruginosa) into polymethyl methacrylate during the polymerization process, followed by determination of their antibacterial activity.Results: ACM showed the possibility of bacteriophages placement in the cavities of polymethyl methacrylate - the median of the section and the depth of cavities on the outer surface of the polymer sample polymerized at +18…+50Β°C were 100.0 and 40.0 nm, respectively, and on the surface of the transverse cleavage of the sample - 120.0 and 100.0 nm, respectively, which statistically did not differ from the geometric dimensions of the caverns of the sample polymerized at a temperature of +6…+25Β°C.The study of antibacterial activity showed that the ph20 bacteriophage impregnated in polymethyl methacrylate at +6…+25Β°C lost its effective titer within the first six days after the start of the experiment, while the phage ph57 retained an effective titer for at least 13 days.Conclusion: the study confirmed the possibility of bacteriophages impregnation into medical grade polymethyl methacrylate, maintaining the effective titer of the bacteriophage during phage emission into the external environment, which opens the way for the possible application of this method of bacteriophage delivery in clinical practice. It is also assumed that certain bacteriophages are susceptible to aggressive influences from the chemical components of "bone cement" and / or polymerization reaction products, which requires strict selection of bacteriophage strains that could be suitable for this method of delivery.ОбоснованиС. ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ…Β Π²Β ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½ΡΠΊΠΎΠΉ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚ΠΎΠ² ΠΈΠ· Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Π΅Ρ‚ ΠΎΡΡ‚Π°Π²Π°Ρ‚ΡŒΡΡ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ, нСзависимо ΠΎΡ‚ использованного для ΠΈΡ… изготовлСния ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. ΠžΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ внимания Π·Π°ΡΠ»ΡƒΠΆΠΈΠ²Π°ΡŽΡ‚ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅Β Π²Β ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Π΅ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»ΡΡŽΡ‚ exΒ tempore (ΠΏΠΎ ΠΌΠ΅Ρ€Π΅ надобности) ΠΈΠ· ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π°, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΠΏΡ€ΠΈ ортопСдичСских хирургичСских Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°Ρ… (Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΉ костный Ρ†Π΅ΠΌΠ΅Π½Ρ‚). Π—Π°Ρ‰ΠΈΡ‚Π° Ρ‚Π°ΠΊΠΈΡ… ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚ΠΎΠ² ΠΏΡƒΡ‚Π΅ΠΌ ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ†ΠΈΠΈΒ Π²Β Π½ΠΈΡ… Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊΠΎΠ² подвСргаСтся мноТСствСнной ΠΊΡ€ΠΈΡ‚ΠΈΠΊΠ΅, поэтому в качСствС Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Ρ‹ Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊΠ°ΠΌ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ литичСскиС Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΈ, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠ΅ рядом ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… прСимущСств, ΠΎΠ΄Π½Π°ΠΊΠΎ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π°Π±ΠΎΡ‚ ΠΏΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ возмоТности ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ†ΠΈΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ²Β Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Β ΠΈΒ Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ активности в таких условиях в литСратурС Π½Π΅ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ. ЦСль исслСдования ― ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ физичСского размСщСния Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ²Β Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π΅Β ΠΈ Π²Β ΠΌΠΎΠ΄Π΅Π»ΠΈΒ inΒ vitroΒ ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ литичСский Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ эффСкт Π΄Π²ΡƒΡ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ² ΠΏΡ€ΠΈ ΠΈΡ… ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ†ΠΈΠΈΒ Π²Β ΠΈΠ·Π³ΠΎΡ‚Π°Π²Π»ΠΈΠ²Π°Π΅ΠΌΡ‹ΠΉ exΒ tempore ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΉ Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒ Π½Π° этапС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ.Β ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΠ΅Ρ€Π²Ρ‹ΠΌ этапом Π±Ρ‹Π»Π° ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π°Β Π°Ρ‚ΠΎΠΌΠ½ΠΎ-силовая микроскопия (АБМ) ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π° мСдицинского назначСния для выяснСния наличия и размСров ΠΊΠ°Π²Π΅Ρ€Π½, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π²ΡˆΠΈΡ…ΡΡ послС Π·Π°Π²Π΅Ρ€ΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ смСси (+6…+25 Β°CΒ ΠΈΒ +18…+50 Β°C). Π’Ρ‚ΠΎΡ€Ρ‹ΠΌ этапом inΒ vitro Π±Ρ‹Π»ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° импрСгнация Π΄Π²ΡƒΡ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ² (ph20, Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎΒ Π²Β ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ StaphylococcusΒ aureus,Β ΠΈΒ ph57, Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎΒ Π²Β ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ PseudomonasΒ aeruginosa)Β Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚ Π½Π° этапС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈΒ ΡΒ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈΡ… Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ активности.Β Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹.Β Π’Β Ρ…ΠΎΠ΄Π΅ выполнСния АБМ установлСна Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ размСщСния Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ²Β Π²Β ΠΊΠ°Π²Π΅Ρ€Π½Π°Ρ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π°: ΠΌΠ΅Π΄ΠΈΠ°Π½Π° сСчСния и глубины ΠΊΠ°Π²Π΅Ρ€Π½ Π½Π° внСшнСй повСрхности ΠΎΠ±Ρ€Π°Π·Ρ†Π°, ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ +18…+50 Β°C, составила 100,0Β ΠΈΒ 40,0Β Π½ΠΌ соотвСтствСнно,Β Π°Β Π½Π° повСрхности ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠ³ΠΎ скола образца ― 120,0Β ΠΈΒ 100,0Β Π½ΠΌ соотвСтствСнно, Ρ‡Ρ‚ΠΎ статистичСски Π½Π΅ ΠΎΡ‚Π»ΠΈΡ‡Π°Π»ΠΎΡΡŒ ΠΎΡ‚ гСомСтричСских Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² ΠΊΠ°Π²Π΅Ρ€Π½ ΠΎΠ±Ρ€Π°Π·Ρ†Π°, ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ +6…+25 Β°C. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ активности ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, Ρ‡Ρ‚ΠΎ ΠΈΠΌΠΏΡ€Π΅Π³Π½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΏΡ€ΠΈ +6…+25 Β°CΒ Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚ стафилококковый Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Β ph20 ΡƒΡ‚Ρ€Π°Ρ‚ΠΈΠ» эффСктивный Ρ‚ΠΈΡ‚Ρ€ ΡƒΠΆΠ΅Β Π²Β Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²Ρ‹Ρ… ΡˆΠ΅ΡΡ‚ΠΈ суток с момСнта Π½Π°Ρ‡Π°Π»Π° экспСримСнта, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ синСгнойный Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Β ph57 сохранял эффСктивный Ρ‚ΠΈΡ‚Ρ€ ΠΊΠ°ΠΊ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΒ Π²Β Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 13 сут.Β Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. В исслСдовании Π±Ρ‹Π»Π° ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ†ΠΈΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ²Β Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚ мСдицинского назначСния с поддСрТаниСм эффСктивного Ρ‚ΠΈΡ‚Ρ€Π° Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π° ΠΏΡ€ΠΈ Π΅Π³ΠΎ эмиссии Π²ΠΎ внСшнюю срСду, Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΊΡ€Ρ‹Π²Π°Π΅Ρ‚ ΠΏΡƒΡ‚ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ³ΠΎ примСнСния Ρ‚Π°ΠΊΠΎΠ³ΠΎ способа доставки бактСриофагов в клиничСской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅. Π’Π°ΠΊΠΆΠ΅ сдСланы прСдполоТСния о вСроятной подвСрТСнности Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ² агрСссивным воздСйствиям со стороны химичСских ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² «костного Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π°Β» ΠΈ/ΠΈΠ»ΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ, Ρ‡Ρ‚ΠΎ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ строгого ΠΎΡ‚Π±ΠΎΡ€Π° ΠΏΡ€ΠΈΠ³ΠΎΠ΄Π½Ρ‹Ρ… для ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ³ΠΎ способа доставки ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ²

    Magnetic and electric field effect on the photoelectron emission from prototype LHC bean screen material.

    Get PDF
    This paper describes experimental studies of the effect of a dipole field on the photoelectron emission and on the photon reflectivities from LHC beam screen material. These studies were performed using synchrotron radiation from the VEPP-2M storage ring at BINP (Novosibirsk). The particular surface roughness and geometry of the prototype LHC beam screen material requires dedicated experimental measurements. The experiments were performed under conditions close to those expected in the LHC. An important result obtained is that a dipole magnetic field attenuates the photoelectron emission from surface by more than two orders of magnitude with the magnetic field aligned parallel to the surface. The measurements of photon reflectivities, forward scattered and diffuse, and the azimuthal distribution of emitted photoelectrons from the same material are reported. These experimental results are important input for the final design of the LHC beam screen
    • …
    corecore