328 research outputs found
Measurement of the neutron electric dipole moment by crystal diffraction
An experiment using a prototype setup to search for the neutron electric
dipole moment by measuring spin-rotation in a non-centrosymmetric crystal
(quartz) was carried out to investigate statistical sensitivity and systematic
effects of the method. It has been demonstrated that the concept of the method
works. The preliminary result of the experiment is ecm. The experiment showed that an accuracy of ecm can be obtained in 100 days data taking, using available
quartz crystals and neutron beams.Comment: 13 pages, 4 figure
Measurement of the neutron electric dipole moment via spin rotation in a non-centrosymmetric crystal
We have measured the neutron electric dipole moment using spin rotation in a
non-centrosymmetric crystal. Our result is d_n = (2.5 +- 6.5(stat) +-
5.5(syst)) 10^{-24} e cm. The dominating contribution to the systematic
uncertainty is statistical in nature and will reduce with improved statistics.
The statistical sensitivity can be increased to 2 10^{-26} e cm in 100 days
data taking with an improved setup. We state technical requirements for a
systematic uncertainty at the same level.Comment: submitted to Phys. Lett.
Recommended from our members
Placement of sensors for correlated observations
The study was motivated by the necessity to construct monitoring networks in various applied areas. Environmetry, meteorology, and seismology are the most notable examples. The approach is based on the expansion of covariance kernels with respect to their eigenfunctions and subsequent use of numerical algorithms based on convex design theory ideas
Polaritons in a nonideal array of ultracold quantum dots
We develop a numerical model for a defect-containing square lattice of microcavities with embedded ultracold atomic clusters (quantum dots). It is assumed that certain fractions of quantum dots and cavities are absent, which leads to transformation of polariton spectrum of the overall structure. The dispersion relations for polaritonic modes are derived as functions of defect concentrations and on this basis the band gap, the effective masses of lower and upper dispersion branch polaritons as well as their densities of states are evaluated
ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠ°ΡΠΈΠ»ΠΎΠΊΠΎΠΊΠΊΠΎΠ²ΠΎΠ³ΠΎ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³Π° ph20 ΠΈ Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³Π° ΡΠΈΠ½Π΅Π³Π½ΠΎΠΉΠ½ΠΎΠΉ ΠΏΠ°Π»ΠΎΡΠΊΠΈ ph57 ΠΏΡΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΈΡ ΠΈΠΌΠΏΡΠ΅Π³Π½Π°ΡΠΈΠΈ Π² ΠΎΡΡΠΎΠΏΠ΅Π΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΠ΅ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ ΠΈΠ· ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ»ΠΌΠ΅ΡΠ°ΠΊΡΠΈΠ»Π°ΡΠ° (ΠΊΠΎΡΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΠΌΠ΅Π½ΡΠ°)
Background: The problem of bacterial colonization of implants used in medical practice continues to be relevant regardless of the material of the implant. Particular attention deserves polymeric implants, which are prepared ex tempore from polymethyl methacrylate, for example - duting orthopedic surgical interventions (so-called "bone cement"). The protection of such implants by antibiotic impregnation is subjected to multiple criticisms, therefore, as an alternative to antibiotics, lytic bacteriophages with a number of unique advantages can be used - however, no experimental studies have been published on the possibility of impregnating bacteriophages into polymethyl methacrylate and their antibacterial activity assessment under such conditions.Aims: to evaluate the possibility of physical placement of bacteriophages in polymethylmethacrylate and to characterize the lytic antibacterial effect of two different strains of bacteriophages when impregnated into polymer carrier ex tempore during the polymerization process in in vitro model.Materials and methods: Β First stage - Atomic force microscopy (AFM) of polymethyl methacrylate samples for medical purposes was used to determine the presence and size of caverns in polymethyl methacrylate after completion of its polymerization at various reaction Β temperatures (+6β¦+25Β°C and +18β¦+50Β°C).The second stage was performed in vitro and included an impregnation of two different bacteriophage strains (phage ph20 active against S. aureus and ph57 active against Ps. aeruginosa) into polymethyl methacrylate during the polymerization process, followed by determination of their antibacterial activity.Results: ACM showed the possibility of bacteriophages placement in the cavities of polymethyl methacrylate - the median of the section and the depth of cavities on the outer surface of the polymer sample polymerized at +18β¦+50Β°C were 100.0 and 40.0 nm, respectively, and on the surface of the transverse cleavage of the sample - 120.0 and 100.0 nm, respectively, which statistically did not differ from the geometric dimensions of the caverns of the sample polymerized at a temperature of +6β¦+25Β°C.The study of antibacterial activity showed that the ph20 bacteriophage impregnated in polymethyl methacrylate at +6β¦+25Β°C lost its effective titer within the first six days after the start of the experiment, while the phage ph57 retained an effective titer for at least 13 days.Conclusion: the study confirmed the possibility of bacteriophages impregnation into medical grade polymethyl methacrylate, maintaining the effective titer of the bacteriophage during phage emission into the external environment, which opens the way for the possible application of this method of bacteriophage delivery in clinical practice. It is also assumed that certain bacteriophages are susceptible to aggressive influences from the chemical components of "bone cement" and / or polymerization reaction products, which requires strict selection of bacteriophage strains that could be suitable for this method of delivery.ΠΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅. ΠΡΠΎΠ±Π»Π΅ΠΌΠ° Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠ·Π°ΡΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ
Β Π²Β ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΎΠΉ ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ ΠΈΠΌΠΏΠ»Π°Π½ΡΠ°ΡΠΎΠ² ΠΈΠ· ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ°Π΅Ρ ΠΎΡΡΠ°Π²Π°ΡΡΡΡ Π°ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ, Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ ΠΎΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π΄Π»Ρ ΠΈΡ
ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°. ΠΡΠ΄Π΅Π»ΡΠ½ΠΎΠ³ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΡ Π·Π°ΡΠ»ΡΠΆΠΈΠ²Π°ΡΡ ΠΈΠΌΠΏΠ»Π°Π½ΡΠΈΡΡΠ΅ΠΌΡΠ΅Β Π²Β ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΠ΅ ΠΈΠΌΠΏΠ»Π°Π½ΡΠ°ΡΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»ΡΡΡ exΒ tempore (ΠΏΠΎ ΠΌΠ΅ΡΠ΅ Π½Π°Π΄ΠΎΠ±Π½ΠΎΡΡΠΈ) ΠΈΠ· ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ»ΠΌΠ΅ΡΠ°ΠΊΡΠΈΠ»Π°ΡΠ°, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ ΠΏΡΠΈ ΠΎΡΡΠΎΠΏΠ΅Π΄ΠΈΡΠ΅ΡΠΊΠΈΡ
Ρ
ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
Π²ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΡΡΠ²Π°Ρ
(ΡΠ°ΠΊ Π½Π°Π·ΡΠ²Π°Π΅ΠΌΡΠΉ ΠΊΠΎΡΡΠ½ΡΠΉ ΡΠ΅ΠΌΠ΅Π½Ρ). ΠΠ°ΡΠΈΡΠ° ΡΠ°ΠΊΠΈΡ
ΠΈΠΌΠΏΠ»Π°Π½ΡΠ°ΡΠΎΠ² ΠΏΡΡΠ΅ΠΌ ΠΈΠΌΠΏΡΠ΅Π³Π½Π°ΡΠΈΠΈΒ Π²Β Π½ΠΈΡ
Π°Π½ΡΠΈΠ±ΠΈΠΎΡΠΈΠΊΠΎΠ² ΠΏΠΎΠ΄Π²Π΅ΡΠ³Π°Π΅ΡΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΊΡΠΈΡΠΈΠΊΠ΅, ΠΏΠΎΡΡΠΎΠΌΡΒ Π²Β ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π°Π»ΡΡΠ΅ΡΠ½Π°ΡΠΈΠ²Ρ Π°Π½ΡΠΈΠ±ΠΈΠΎΡΠΈΠΊΠ°ΠΌ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΈ, ΠΎΠ±Π»Π°Π΄Π°ΡΡΠΈΠ΅ ΡΡΠ΄ΠΎΠΌ ΡΠ½ΠΈΠΊΠ°Π»ΡΠ½ΡΡ
ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ², ΠΎΠ΄Π½Π°ΠΊΠΎ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΡΠ°Π±ΠΎΡ ΠΏΠΎ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΈΠΌΠΏΡΠ΅Π³Π½Π°ΡΠΈΠΈ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΎΠ²Β Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ»ΠΌΠ΅ΡΠ°ΠΊΡΠΈΠ»Π°ΡΒ ΠΈΒ Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈΒ Π²Β ΡΠ°ΠΊΠΈΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Β Π²Β Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅ Π½Π΅ ΠΎΠΏΡΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ.Β Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡΒ β ΠΈΠ·ΡΡΠΈΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΎΠ²Β Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ»ΠΌΠ΅ΡΠ°ΠΊΡΠΈΠ»Π°ΡΠ΅Β ΠΈ Π²Β ΠΌΠΎΠ΄Π΅Π»ΠΈΒ inΒ vitroΒ ΠΎΡ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΠΎΠ²Π°ΡΡ Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠΉ ΡΡΡΠ΅ΠΊΡ Π΄Π²ΡΡ
ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΡΠ°ΠΌΠΌΠΎΠ² Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΎΠ² ΠΏΡΠΈ ΠΈΡ
ΠΈΠΌΠΏΡΠ΅Π³Π½Π°ΡΠΈΠΈΒ Π²Β ΠΈΠ·Π³ΠΎΡΠ°Π²Π»ΠΈΠ²Π°Π΅ΠΌΡΠΉ exΒ tempore ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΠΉ Π½ΠΎΡΠΈΡΠ΅Π»Ρ Π½Π° ΡΡΠ°ΠΏΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ.Β ΠΠ΅ΡΠΎΠ΄Ρ. ΠΠ΅ΡΠ²ΡΠΌ ΡΡΠ°ΠΏΠΎΠΌ Π±ΡΠ»Π° ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π°Β Π°ΡΠΎΠΌΠ½ΠΎ-ΡΠΈΠ»ΠΎΠ²Π°Ρ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡ (ΠΠ‘Π) ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ»ΠΌΠ΅ΡΠ°ΠΊΡΠΈΠ»Π°ΡΠ° ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΎΠ³ΠΎ Π½Π°Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π΄Π»Ρ Π²ΡΡΡΠ½Π΅Π½ΠΈΡ Π½Π°Π»ΠΈΡΠΈΡΒ ΠΈΒ ΡΠ°Π·ΠΌΠ΅ΡΠΎΠ² ΠΊΠ°Π²Π΅ΡΠ½, ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π²ΡΠΈΡ
ΡΡ ΠΏΠΎΡΠ»Π΅ Π·Π°Π²Π΅ΡΡΠ΅Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ ΠΏΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡ ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ (+6β¦+25 Β°CΒ ΠΈΒ +18β¦+50 Β°C). ΠΡΠΎΡΡΠΌ ΡΡΠ°ΠΏΠΎΠΌ inΒ vitro Π±ΡΠ»ΠΎ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΈΠΌΠΏΡΠ΅Π³Π½Π°ΡΠΈΡ Π΄Π²ΡΡ
ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΡΠ°ΠΌΠΌΠΎΠ² Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΎΠ² (ph20, Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎΒ Π²Β ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ StaphylococcusΒ aureus,Β ΠΈΒ ph57, Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎΒ Π²Β ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ PseudomonasΒ aeruginosa)Β Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ»ΠΌΠ΅ΡΠ°ΠΊΡΠΈΠ»Π°Ρ Π½Π° ΡΡΠ°ΠΏΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈΒ ΡΒ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈΡ
Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ.Β Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ.Β ΠΒ Ρ
ΠΎΠ΄Π΅ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΠ‘Π ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΎΠ²Β Π²Β ΠΊΠ°Π²Π΅ΡΠ½Π°Ρ
ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ»ΠΌΠ΅ΡΠ°ΠΊΡΠΈΠ»Π°ΡΠ°: ΠΌΠ΅Π΄ΠΈΠ°Π½Π° ΡΠ΅ΡΠ΅Π½ΠΈΡΒ ΠΈΒ Π³Π»ΡΠ±ΠΈΠ½Ρ ΠΊΠ°Π²Π΅ΡΠ½ Π½Π° Π²Π½Π΅ΡΠ½Π΅ΠΉ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΠΎΠ±ΡΠ°Π·ΡΠ°, ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ΅ +18β¦+50 Β°C, ΡΠΎΡΡΠ°Π²ΠΈΠ»Π° 100,0Β ΠΈΒ 40,0Β Π½ΠΌ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ,Β Π°Β Π½Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΠΏΠΎΠΏΠ΅ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠΊΠΎΠ»Π° ΠΎΠ±ΡΠ°Π·ΡΠ°Β β 120,0Β ΠΈΒ 100,0Β Π½ΠΌ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, ΡΡΠΎ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π½Π΅ ΠΎΡΠ»ΠΈΡΠ°Π»ΠΎΡΡ ΠΎΡ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ°Π·ΠΌΠ΅ΡΠΎΠ² ΠΊΠ°Π²Π΅ΡΠ½ ΠΎΠ±ΡΠ°Π·ΡΠ°, ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ΅ +6β¦+25 Β°C. ΠΠ·ΡΡΠ΅Π½ΠΈΠ΅ Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, ΡΡΠΎ ΠΈΠΌΠΏΡΠ΅Π³Π½ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΠΏΡΠΈ +6β¦+25 Β°CΒ Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ»ΠΌΠ΅ΡΠ°ΠΊΡΠΈΠ»Π°Ρ ΡΡΠ°ΡΠΈΠ»ΠΎΠΊΠΎΠΊΠΊΠΎΠ²ΡΠΉ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³Β ph20 ΡΡΡΠ°ΡΠΈΠ» ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΉ ΡΠΈΡΡ ΡΠΆΠ΅Β Π²Β ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ²ΡΡ
ΡΠ΅ΡΡΠΈ ΡΡΡΠΎΠΊΒ ΡΒ ΠΌΠΎΠΌΠ΅Π½ΡΠ° Π½Π°ΡΠ°Π»Π° ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°, ΡΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ ΡΠΈΠ½Π΅Π³Π½ΠΎΠΉΠ½ΡΠΉ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³Β ph57 ΡΠΎΡ
ΡΠ°Π½ΡΠ» ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΉ ΡΠΈΡΡ ΠΊΠ°ΠΊ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΒ Π²Β ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 13Β ΡΡΡ.Β ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅.Β ΠΒ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ Π±ΡΠ»Π° ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΈΠΌΠΏΡΠ΅Π³Π½Π°ΡΠΈΠΈ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΎΠ²Β Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ»ΠΌΠ΅ΡΠ°ΠΊΡΠΈΠ»Π°Ρ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΎΠ³ΠΎ Π½Π°Π·Π½Π°ΡΠ΅Π½ΠΈΡΒ ΡΒ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠΈΡΡΠ° Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³Π° ΠΏΡΠΈ Π΅Π³ΠΎ ΡΠΌΠΈΡΡΠΈΠΈ Π²ΠΎ Π²Π½Π΅ΡΠ½ΡΡ ΡΡΠ΅Π΄Ρ, ΡΡΠΎ ΠΎΡΠΊΡΡΠ²Π°Π΅Ρ ΠΏΡΡΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ³ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠΏΠΎΡΠΎΠ±Π° Π΄ΠΎΡΡΠ°Π²ΠΊΠΈ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΎΠ²Β Π²Β ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅. Π’Π°ΠΊΠΆΠ΅ ΡΠ΄Π΅Π»Π°Π½Ρ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡΒ ΠΎΒ Π²Π΅ΡΠΎΡΡΠ½ΠΎΠΉ ΠΏΠΎΠ΄Π²Π΅ΡΠΆΠ΅Π½Π½ΠΎΡΡΠΈ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ
Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΎΠ² Π°Π³ΡΠ΅ΡΡΠΈΠ²Π½ΡΠΌ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠΌ ΡΠΎ ΡΡΠΎΡΠΎΠ½Ρ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² Β«ΠΊΠΎΡΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΠΌΠ΅Π½ΡΠ°Β» ΠΈ/ΠΈΠ»ΠΈ ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² ΡΠ΅Π°ΠΊΡΠΈΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ, ΡΡΠΎ ΡΡΠ΅Π±ΡΠ΅Ρ ΡΡΡΠΎΠ³ΠΎΠ³ΠΎ ΠΎΡΠ±ΠΎΡΠ° ΠΏΡΠΈΠ³ΠΎΠ΄Π½ΡΡ
Π΄Π»Ρ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ³ΠΎ ΡΠΏΠΎΡΠΎΠ±Π° Π΄ΠΎΡΡΠ°Π²ΠΊΠΈ ΡΡΠ°ΠΌΠΌΠΎΠ² Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΎΠ²
Magnetic and electric field effect on the photoelectron emission from prototype LHC bean screen material.
This paper describes experimental studies of the effect of a dipole field on the photoelectron emission and on the photon reflectivities from LHC beam screen material. These studies were performed using synchrotron radiation from the VEPP-2M storage ring at BINP (Novosibirsk). The particular surface roughness and geometry of the prototype LHC beam screen material requires dedicated experimental measurements. The experiments were performed under conditions close to those expected in the LHC. An important result obtained is that a dipole magnetic field attenuates the photoelectron emission from surface by more than two orders of magnitude with the magnetic field aligned parallel to the surface. The measurements of photon reflectivities, forward scattered and diffuse, and the azimuthal distribution of emitted photoelectrons from the same material are reported. These experimental results are important input for the final design of the LHC beam screen
- β¦