17 research outputs found

    Time-dependent action of carbon monoxide on the newborn cerebrovascular circulation

    No full text
    Carbon monoxide (CO) causes cerebral arteriolar dilation in newborn pigs by the activation of large-conductance Ca2+-activated K+ channels. In adult rat cerebral and skeletal muscle arterioles, CO has been reported to produce constriction caused by the inhibition of nitric oxide (NO) synthase (NOS). We hypothesized that, in contrast to dilation to acute CO, more prolonged exposure of newborn cerebral arterioles to elevated CO produces constriction by reducing NO. In piglets with closed cranial windows, pial arteriolar responses to isoproterenol (10−6 M), sodium nitroprusside (SNP; 10−7 and 3 × 10−7 M), and l-arginine ethyl ester (l-Arg; 10−5 and 10−4 M) were determined before and after 2 h of treatment with CO. CO (10−7 M) caused transient dilation and had no further effects. CO (2 × 10−7 and 10−6 M) initially caused vasodilation, but over the 2-h exposure, pial arterioles constricted and removal of the CO caused dilation. Exposure to elevated CO (2 h) did not alter dilation to SNP or isoproterenol. Conversely, the NOS substrate l-Arg caused dilation before CO that was progressively lost over 90 min of elevated CO. If NO was held constant, CO caused dilation that was sustained for 2 h. We conclude that in neonates, cerebral arteriole responses to CO are biphasic: dilation to acute elevation with subsequent constriction from NOS inhibition after more prolonged exposure. As a result, short episodic production of CO allows function as a dilator gasotransmitter, whereas prolonged elevation can reduce NO to elevate cerebrovascular tone. The interaction between heme oxygenase/CO and NOS/NO could form a negative feedback system in the control of cerebral vascular tone

    Cerebrovascular dilation via selective targeting of the cholane steroid-recognition site in the bk channel β1-subunit by a novel nonsteroidal agents

    No full text
    The Ca21/voltage-gated K+ large conductance (BK) channel β1 subunit is particularly abundant in vascular smooth muscle. By determining their phenotype, BK β1 allows the BK channels to reduce myogenic tone, facilitating vasodilation. The endogenous steroid lithocholic acid (LCA) dilates cerebral arteries via BK channel activation, which requires recognition by a BK β1 site that includes Thr169. Whether exogenous nonsteroidal agents can access this site to selectively activate β1-containing BK channels and evoke vasodilation remain unknown. We performed a chemical structure database similarity search using LCA as a template, along with a two-step reaction to generate sodium 3-hydroxyolean-12-en-30-oate (HENA). HENA activated the BK (cbv1 1 β1) channels cloned from rat cerebral artery myocytes with a potency (EC50-53 μM) similar to and an efficacy (2.5 potentiation) significantly greater than that of LCA. This HENA action was replicated on native channels in rat cerebral artery myocytes. HENA failed to activate the channels made of cbv11 β2, β3, β4, or β1T169A, indicating that this drug selectively targets β1-containing BK channels via the BK β1 steroid-sensing site. HENA (3-45 μM) dilated the rat and C57BL/ 6 mouse pressurized cerebral arteries. Consistent with the electrophysiologic results, this effect was larger than that of LCA. HENA failed to dilate the arteries from the KCNMB1 knockout mouse, underscoring BK β1\u27s role in HENA action. Finally, carotid artery-infusion of HENA (45 μM) dilated the pial cerebral arterioles via selective BK-channel targeting. In conclusion, we have identified for the first time a nonsteroidal agent that selectively activates β1-containing BK channels by targeting the steroid-sensing site in BK β1, rendering vasodilation. © 2013 by The American Society for Pharmacology and Experimental Therapeutics

    Selective head cooling during neonatal seizures prevents postictal cerebral vascular dysfunction without reducing epileptiform activity

    No full text
    Epileptic seizures in neonates cause cerebrovascular injury and impairment of cerebral blood flow (CBF) regulation. In the bicuculline model of seizures in newborn pigs, we tested the hypothesis that selective head cooling prevents deleterious effects of seizures on cerebral vascular functions. Preventive or therapeutic ictal head cooling was achieved by placing two head ice packs during the preictal and/or ictal states, respectively, for the ~2-h period of seizures. Head cooling lowered the brain and core temperatures to 25.6 ± 0.3 and 33.5 ± 0.1°C, respectively. Head cooling had no anticonvulsant effects, as it did not affect the bicuculline-evoked electroencephalogram parameters, including amplitude, duration, spectral power, and spike frequency distribution. Acute and long-term cerebral vascular effects of seizures in the normothermic and head-cooled groups were tested during the immediate (2–4 h) and delayed (48 h) postictal periods. Seizure-induced cerebral vascular injury during the immediate postictal period was detected as terminal deoxynucleotidyl transferase- mediated dUTP nick-end labeling-positive staining of cerebral arterioles and a surge of brain-derived circulating endothelial cells in peripheral blood in the normothermic group, but not in the headcooled groups. During the delayed postictal period, endotheliumdependent cerebral vasodilator responses were greatly reduced in the normothermic group, indicating impaired CBF regulation. Preventive or therapeutic ictal head cooling mitigated the endothelial injury and greatly reduced loss of postictal cerebral vasodilator functions. Overall, head cooling during seizures is a clinically relevant approach to protecting the neonatal brain by preventing cerebrovascular injury and the loss of the endothelium-dependent control of CBF without reducing epileptiform activity
    corecore