115 research outputs found

    Evaluation of Decoherence for Quantum Control and Computing

    Full text link
    Different approaches in quantifying environmentally-induced decoherence are considered. We identify a measure of decoherence, derived from the density matrix of the system of interest, that quantifies the environmentally induced error, i.e., deviation from the ideal isolated-system dynamics. This measure can be shown to have several useful features. Its behavior as a function of time has no dependence on the initial conditions, and is expected to be insensitive to the internal dynamical time scales of the system, thus only probing the decoherence-related time dependence. For a spin-boson model - a prototype of a qubit interacting with environment - we also demonstrate the property of additivity: in the regime of the onset of decoherence, the sum of the individual qubit error measures provides an estimate of the error for a several-qubit system, even if the qubits are entangled, as expected in quantum-computing applications. This makes it possible to estimate decoherence for several-qubits quantum computer gate designs for which explicit calculations are exceedingly difficult.Comment: 25 pages, 1 figur

    Decoherence Rate of Semiconductor Charge Qubit Coupled to Acoustic Phonon Reservoir

    Full text link
    We analyze decoherence of an electron in a double-dot due to the interaction with acoustic phonons. For large tunneling rates between the quantum dots, the main contribution to decoherence comes from the phonon emission relaxation processes, while for small tunneling rates, the virtual-phonon, dephasing processes dominate. Our results show that in common semiconductors, such as Si and GaAs, the latter mechanism determines the upper limit for the double-dot charge qubit performance measure.Comment: 4 pages, 2 figures, typos corrected, fig. 2 replaced by the improved versio

    Measure of decoherence in quantum error correction for solid-state quantum computing

    Full text link
    We considered the interaction of semiconductor quantum register with noisy environment leading to various types of qubit errors. We analysed both phase and amplitude decays during the process of electron-phonon interaction. The performance of quantum error correction codes (QECC) which will be inevitably used in full scale quantum information processors was studied in realistic conditions in semiconductor nanostructures. As a hardware basis for quantum bit we chose the quantum spatial states of single electron in semiconductor coupled double quantum dot system. The modified 5- and 9-qubit quantum error correction (QEC) algorithms by Shor and DiVincenzo without error syndrome extraction were applied to quantum register. 5-qubit error correction procedures were implemented for Si charge double dot qubits in the presence of acoustic phonon environment. Chi-matrix, Choi-Jamiolkowski state and measure of decoherence techniques were used to quantify qubit fault-tolerance. Our results showed that the introduction of above quantum error correction techniques at small phonon noise levels provided quadratic improvement of output error rates. The efficiency of 5-qubits quantum error correction algorithm in semiconductor quantum information processors was demonstrated

    Measures of Decoherence

    Full text link
    Methods for quantifying environmentally induced decoherence in quantum systems are investigated. We formulate criteria for measuring the degree of decoherence and consider several representative examples, including a spin interacting with the modes of a bosonic, e.g., phonon, bath. We formulate an approach based on the operator norm measuring the deviation of the actual density matrix from the ideal one which would describe the system without environmental interactions
    corecore