43 research outputs found
Modulation of chemokine gradients by apheresis redirects leukocyte trafficking to different compartments during sepsis, studies in a rat model
Introduction: Prior work suggests that leukocyte trafficking is determined by local chemokine gradients between the nidus of infection and the plasma. We recently demonstrated that therapeutic apheresis can alter immune mediator concentrations in the plasma, protect against organ injury, and improve survival. Here we aimed to determine whether the removal of chemokines from the plasma by apheresis in experimental peritonitis changes chemokine gradients and subsequently enhances leukocyte localization into the infected compartment, and away from healthy tissues.Methods: In total, 76 male adult Sprague-Dawley rats weighing 400 g to 600 g were included in this study. Eighteen hours after inducing sepsis by cecal ligation and puncture, we randomized these rats to apheresis or sham treatment for 4 hours. Cytokines, chemokines, and leukocyte counts from blood, peritoneal cavity, and lung were measured. In a separate experiment, we labeled neutrophils from septic donor animals and injected them into either apheresis or sham-treated animals. All numeric data with normal distributions were compared with one-way analysis of variance, and numeric data not normally distributed were compared with the Mann-Whitney U test.Results: Apheresis significantly removed plasma cytokines and chemokines, increased peritoneal fluid-to-blood chemokine (C-X-C motif ligand 1, ligand 2, and C-C motif ligand 2) ratios, and decreased bronchoalveolar lavage fluid-to-blood chemokine ratios, resulting in enhanced leukocyte recruitment into the peritoneal cavity and improved bacterial clearance, but decreased recruitment into the lung. Apheresis also reduced myeloperoxidase activity and histologic injury in the lung, liver, and kidney. These Labeled donor neutrophils exhibited decreased localization in the lung when infused into apheresis-treated animals.Conclusions: Our results support the concept of chemokine gradient control of leukocyte trafficking and demonstrate the efficacy of apheresis to target this mechanism and reduce leukocyte infiltration into the lung. © 2014 Peng et al
Roles of the creatine kinase system and myoglobin in maintaining energetic state in the working heart
<p>Abstract</p> <p>Background</p> <p>The heart is capable of maintaining contractile function despite a transient decrease in blood flow and increase in cardiac ATP demand during systole. This study analyzes a previously developed model of cardiac energetics and oxygen transport to understand the roles of the creatine kinase system and myoglobin in maintaining the ATP hydrolysis potential during beat-to-beat transient changes in blood flow and ATP hydrolysis rate.</p> <p>Results</p> <p>The theoretical investigation demonstrates that elimination of myoglobin only slightly increases the predicted range of oscillation of cardiac oxygenation level during beat-to-beat transients in blood flow and ATP utilization. In silico elimination of myoglobin has almost no impact on the cytoplasmic ATP hydrolysis potential (Δ<it>G</it><sub>ATPase</sub>). In contrast, disabling the creatine kinase system results in considerable oscillations of cytoplasmic ADP and ATP levels and seriously deteriorates the stability of Δ<it>G</it><sub>ATPase </sub>in the beating heart.</p> <p>Conclusion</p> <p>The CK system stabilizes Δ<it>G</it><sub>ATPase </sub>by both buffering ATP and ADP concentrations and enhancing the feedback signal of inorganic phosphate in regulating mitochondrial oxidative phosphorylation.</p
Oncolytic Measles Virotherapy and Opposition to Measles Vaccination
Recent measles epidemics in US and European cities where vaccination coverage has declined are providing a harsh reminder for the need to maintain protective levels of immunity across the entire population. Vaccine uptake rates have been declining in large part because of public misinformation regarding a possible association between measles vaccination and autism for which there is no scientific basis. The purpose of this article is to address a new misinformed antivaccination argument-that measles immunity is undesirable because measles virus is protective against cancer. Having worked for many years to develop engineered measles viruses as anticancer therapies, we have concluded (1) that measles is not protective against cancer and (2) that its potential utility as a cancer therapy will be enhanced, not diminished, by prior vaccination
The expansion field: The value of H_0
Any calibration of the present value of the Hubble constant requires
recession velocities and distances of galaxies. While the conversion of
observed velocities into true recession velocities has only a small effect on
the result, the derivation of unbiased distances which rest on a solid zero
point and cover a useful range of about 4-30 Mpc is crucial. A list of 279 such
galaxy distances within v<2000 km/s is given which are derived from the tip of
the red-giant branch (TRGB), from Cepheids, and from supernovae of type Ia (SNe
Ia). Their random errors are not more than 0.15 mag as shown by
intercomparison. They trace a linear expansion field within narrow margins from
v=250 to at least 2000 km/s. Additional 62 distant SNe Ia confirm the linearity
to at least 20,000 km/s. The dispersion about the Hubble line is dominated by
random peculiar velocities, amounting locally to <100 km/s but increasing
outwards. Due to the linearity of the expansion field the Hubble constant H_0
can be found at any distance >4.5 Mpc. RR Lyr star-calibrated TRGB distances of
78 galaxies above this limit give H_0=63.0+/-1.6 at an effective distance of 6
Mpc. They compensate the effect of peculiar motions by their large number.
Support for this result comes from 28 independently calibrated Cepheids that
give H_0=63.4+/-1.7 at 15 Mpc. This agrees also with the large-scale value of
H_0=61.2+/-0.5 from the distant, Cepheid-calibrated SNe Ia. A mean value of
H_0=62.3+/-1.3 is adopted. Because the value depends on two independent zero
points of the distance scale its systematic error is estimated to be 6%.
Typical errors of H_0 come from the use of a universal, yet unjustified P-L
relation of Cepheids, the neglect of selection bias in magnitude-limited
samples, or they are inherent to the adopted models.Comment: 44 pages, 4 figures, 6 tables, accepted for publication in the
Astronony and Astrophysics Review 15
Selective cell targeting and lineage tracing of human induced pluripotent stem cells using recombinant avian retroviruses
Human induced pluripotent stem cells (hiPSC) differentiate into multiple cell types. Selective cell targeting is often needed for analyzing gene function by overexpressing proteins in a distinct population of hiPSC-derived cell types and for monitoring cell fate in response to stimuli. However, to date, this has not been possible, as commonly used viruses enter the hiPSC via ubiquitously expressed receptors. Here, we report for the first time the application of a heterologous avian receptor, the tumor virus receptor A (TVA), to selectively transduce TVA(+) cells in a mixed cell population. Expression of the TVA surface receptor via genetic engineering renders cells susceptible for infection by avian leucosis virus (ALV). We generated hiPSC lines with this stably integrated, ectopic TVA receptor gene that expressed the receptor while retaining pluripotency. The undifferentiated hiPSC(TVA+) as well as their differentiating progeny could be infected by recombinant ALV (so-called RCAS virus) with high efficiency. Due to incomplete receptor blocking, even sequential infection of differentiating or undifferentiated TVA(+) cells was possible. In conclusion, the TVA/RCAS system provides an efficient and gentle gene transfer system for hiPSC and extends our possibilities for selective cell targeting and lineage tracing studies.N