4 research outputs found

    Changes in Medicago truncatula seed proteome along the rehydration–dehydration cycle highlight new players in the genotoxic stress response

    Get PDF
    IntroductionSeveral molecular aspects underlying the seed response to priming and the resulting vigor profile are still poorly understood. Mechanisms involved in genome maintenance deserve attention since the balance between stimulation of germination and DNA damage accumulation versus active repair is a key determinant for designing successful seed priming protocols.MethodsChanges in the Medicago truncatula seed proteome were investigated in this study, using discovery mass spectrometry and label-free quantification, along the rehydration-dehydration cycle of a standard vigorization treatment (hydropriming plus dry-back), and during post-priming imbibition.Resuts and discussionFrom 2056 to 2190 proteins were detected in each pairwise comparison, among which six were differentially accumulated and 36 were detected only in one condition. The following proteins were selected for further investigation: MtDRP2B (DYNAMIN-RELATED PROTEIN), MtTRXm4 (THIOREDOXIN m4), and MtASPG1 (ASPARTIC PROTEASE IN GUARD CELL 1) showing changes in seeds under dehydration stress; MtITPA (INOSINE TRIPHOSPHATE PYROPHOSPHORYLASE), MtABA2 (ABSCISIC ACID DEFICIENT 2), MtRS2Z32 (SERINE/ARGININE-RICH SPLICING FACTOR RS2Z32), and MtAQR (RNA HELICASE AQUARIUS) that were differentially regulated during post-priming imbibition. Changes in the corresponding transcript levels were assessed by qRT-PCR. In animal cells, ITPA hydrolyses 2’-deoxyinosine triphosphate and other inosine nucleotides, preventing genotoxic damage. A proof of concept was performed by imbibing primed and control M. truncatula seeds in presence/absence of 20 mM 2’-deoxyinosine (dI). Results from comet assay highlighted the ability of primed seeds to cope with dI-induced genotoxic damage. The seed repair response was assessed by monitoring the expression profiles of MtAAG (ALKYL-ADENINE DNA GLYCOSILASE) and MtEndoV (ENDONUCLEASE V) genes that participate in the repair of the mismatched I:T pair in BER (base excision repair) and AER (alternative excision repair) pathways, respectively

    ROS Accumulation as a Hallmark of Dehydration Stress in Primed and Overprimed Medicago truncatula Seeds

    No full text
    Seed priming protocols implement incomplete imbibition phases, as well as physical, chemical or biological treatments, to activate pre-germinative metabolism and stress response, thus improving germination performances, seedling establishment and stress tolerance according to agricultural productivity requirements. The dehydration phase following priming treatments represents a critical variable, since an excessively prolonged imbibition (overpriming) impairs desiccation tolerance, compromising seed viability and seedling establishment. Priming protocols generally optimize imbibition-dehydration timing empirically to avoid overpriming. Hence, a better understanding of the dynamics underlying the loss of desiccation tolerance represents a promising route to test and develop efficient and cost-effective priming techniques. In the present work, priming and overpriming conditions were defined to explore the role of desiccation tolerance in seed priming efficiency in the model legume Medicago truncatula. The positive effects of hydropriming and kinetinmediated hormopriming on germination parameters were screened in combination with conditions of short/prolonged priming and mild/severe overpriming. Biometric analyses highlighted contrasting responses in terms of germination performances and seedling development, while ROS (reactive xygen species) levels measured during dehydration positively correlate with the loss of desiccation tolerance in early seedlings, suggesting possible applications to monitor priming progression and predict overpriming occurrence

    Identification and Characterization of SOG1 (Suppressor of Gamma Response 1) Homologues in Plants Using Data Mining Resources and Gene Expression Profiling

    No full text
    SOG1 (Suppressor of the Gamma response 1) is the master-regulator of plant DNA damage response (DDR), a highly coordinated network of DNA damage sensors, transducers, mediators, and effectors, with highly coordinated activities. SOG1 transcription factor belongs to the NAC/NAM protein family, containing the well-conserved NAC domain and five serine-glutamine (SQ) motifs, preferential targets for phosphorylation by ATM and ATR. So far, the information gathered for the SOG1 function comes from studies on the model plant Arabidopsis thaliana. To expand the knowledge on plant-specific DDR, it is opportune to gather information on other SOG1 orthologues. The current study identified plants where multiple SOG1 homologues are present and evaluated their functions by leveraging the information contained in publicly available transcriptomics databases. This analysis revealed the presence of multiple SOG1 sequences in thirteen plant species, and four (Medicago truncatula, Glycine max, Kalankoe fedtschenkoi, Populus trichocarpa) were selected for gene expression data mining based on database availability. Additionally, M. truncatula seeds and seedlings exposed to treatments known to activate DDR pathways were used to evaluate the expression profiles of MtSOG1a and MtSOG1b. The experimental workflow confirmed the data retrieved from transcriptomics datasets, suggesting that the SOG1 homologues have redundant functions in different plant species

    Identification and Characterization of SOG1 (Suppressor of Gamma-Response 1) Homologues in Plants using Data Mining Resources and Gene Expression Profiling

    No full text
    SOG1 (Suppressor of gamma response 1) is the master-regulator of plant DNA damage response (DDR), a highly coordinated network of DNA damage sensors, transducers, mediators, and effectors, with highly coordinated activities. SOG1 transcription factor belongs to the NAC/NAM protein family, containing the well-conserved NAC domain and five serine-glutamine (SQ) motifs, preferential targets for phosphorylation by ATM and ATR. So far, the information gathered for the SOG1 function comes from studies on the model plant Arabidopsis thaliana. To expand the knowledge on plant-specific DDR, it is opportune to gather information on other SOG1 orthologues. The current study identified plants where multiple SOG1 homologues are present and evaluated their functions by leveraging the information contained in publicly available transcriptomics databases. This analysis revealed the presence of multiple SOG1 sequences in thirteen plant species, and four (Medicago truncatula, Glycine max, Kalankoe fedtschenkoi, Populus trichocarpa) were selected for gene expression data mining based on database availability. Additionally, M. truncatula seeds and seedlings exposed to treatments known to activate DDR pathways were used to evaluate the expression profiles of MtSOG1a and MtSOG1b. The experimental workflow confirmed the data retrieved from transcriptomics datasets, suggesting that the SOG1 homologues have redundant functions in different plant species
    corecore