494 research outputs found

    Observation of the skin-depth effect on the Casimir force between metallic surfaces

    Full text link
    We have performed comparative measurements of the Casimir force between a metallic plate and a transparent sphere coated with metallic films of different thicknesses. We have observed that, if the thickness of the coating is less than the skin-depth of the electromagnetic modes that mostly contribute to the interaction, the force is significantly smaller than that measured with a thick bulk-like film. Our results provide the first direct evidence of the skin-depth effect on the Casimir force between metallic surfaces.Comment: submitted for publication on Dec. 10, 2004. 3 figure

    Lateral Chirality-sorting Optical Spin Forces in Evanescent Fields

    Full text link
    The transverse component of the spin angular momentum of evanescent waves gives rise to lateral optical forces on chiral particles, which have the unusual property of acting in a direction in which there is neither a field gradient nor wave propagation. As their direction and strength depends on the chiral polarizability of the particle, they act as chirality-sorting and may offer a mechanism for passive chirality spectroscopy. The absolute strength of the forces also substantially exceeds that of other recently predicted sideways optical forces, such that they may more readily offer an experimental confirmation of the phenomenon.Comment: 7 pages, 2 Figure

    New Challenges and Directions in Casimir Force Experiments

    Full text link
    This article is divided in three sections. In the first section we briefly review some high precision experiments on the Casimir force, underlying an important aspect of the analysis of the data. In the second section we discuss our recent results in the measurement of the Casimir force using non-trivial materials. In the third section we present some original ideas for experiments on new phenomena related to the Casimir effects.Comment: 6 pages, invited contribution to the 6th Workshop on Quantum Field Theory under the Influence of External Conditions (QFEXT03), Norman, Oklahoma, September 15-19, 200

    Absolute Position Total Internal Reflection Microscopy with an Optical Tweezer

    Full text link
    A non-invasive, in-situ calibration method for Total Internal Reflection Microscopy (TIRM) based on optical tweezing is presented which greatly expands the capabilities of this technique. We show that by making only simple modifications to the basic TIRM sensing setup and procedure, a probe particle's absolute position relative to a dielectric interface may be known with better than 10 nm precision out to a distance greater than 1 μ\mum from the surface. This represents an approximate 10x improvement in error and 3x improvement in measurement range over conventional TIRM methods. The technique's advantage is in the direct measurement of the probe particle's scattering intensity vs. height profile in-situ, rather than relying on calculations or inexact system analogs for calibration. To demonstrate the improved versatility of the TIRM method in terms of tunability, precision, and range, we show our results for the hindered near-wall diffusion coefficient for a spherical dielectric particle.Comment: 10 pages. Submitted for peer review 8/20/201

    Topology Optimized Multi-layered Meta-optics

    Full text link
    We propose a general topology optimization framework for metasurface inverse design that can automatically discover highly complex multi-layered meta-structures with increased functionalities. In particular, we present topology-optimized multi-layered geometries exhibiting angular phase control, including a single-piece nanophotonic metalens with angular aberration correction as well as an angle-convergent metalens that focuses light onto the same focal spot regardless of the angle of incidence
    corecore