2,210 research outputs found

    Vortex energy and vortex bending for a rotating Bose-Einstein condensate

    Full text link
    For a Bose-Einstein condensate placed in a rotating trap, we give a simplified expression of the Gross-Pitaevskii energy in the Thomas Fermi regime, which only depends on the number and shape of the vortex lines. Then we check numerically that when there is one vortex line, our simplified expression leads to solutions with a bent vortex for a range of rotationnal velocities and trap parameters which are consistent with the experiments.Comment: 7 pages, 2 figures. submitte

    Skeleton and fractal scaling in complex networks

    Full text link
    We find that the fractal scaling in a class of scale-free networks originates from the underlying tree structure called skeleton, a special type of spanning tree based on the edge betweenness centrality. The fractal skeleton has the property of the critical branching tree. The original fractal networks are viewed as a fractal skeleton dressed with local shortcuts. An in-silico model with both the fractal scaling and the scale-invariance properties is also constructed. The framework of fractal networks is useful in understanding the utility and the redundancy in networked systems.Comment: 4 pages, 2 figures, final version published in PR

    Emergence of fractal behavior in condensation-driven aggregation

    Full text link
    We investigate a model in which an ensemble of chemically identical Brownian particles are continuously growing by condensation and at the same time undergo irreversible aggregation whenever two particles come into contact upon collision. We solved the model exactly by using scaling theory for the case whereby a particle, say of size xx, grows by an amount αx\alpha x over the time it takes to collide with another particle of any size. It is shown that the particle size spectra of such system exhibit transition to dynamic scaling c(x,t)∼t−βϕ(x/tz)c(x,t)\sim t^{-\beta}\phi(x/t^z) accompanied by the emergence of fractal of dimension df=11+2αd_f={{1}\over{1+2\alpha}}. One of the remarkable feature of this model is that it is governed by a non-trivial conservation law, namely, the dfthd_f^{th} moment of c(x,t)c(x,t) is time invariant regardless of the choice of the initial conditions. The reason why it remains conserved is explained by using a simple dimensional analysis. We show that the scaling exponents β\beta and zz are locked with the fractal dimension dfd_f via a generalized scaling relation β=(1+df)z\beta=(1+d_f)z.Comment: 8 pages, 6 figures, to appear in Phys. Rev.

    Weakly Interacting Bose-Einstein Condensates Under Rotation: Mean-field versus Exact Solutions

    Full text link
    We consider a weakly-interacting, harmonically-trapped Bose-Einstein condensed gas under rotation and investigate the connection between the energies obtained from mean-field calculations and from exact diagonalizations in a subspace of degenerate states. From the latter we derive an approximation scheme valid in the thermodynamic limit of many particles. Mean-field results are shown to emerge as the correct leading-order approximation to exact calculations in the same subspace.Comment: 4 pages, RevTex, submitted to PR

    Analytical results for a trapped, weakly-interacting Bose-Einstein condensate under rotation

    Full text link
    We examine the problem of a repulsive, weakly-interacting and harmonically trapped Bose-Einstein condensate under rotation. We derive a simple analytic expression for the energy incorporating the interactions when the angular momentum per particle is between zero and one and find that the interaction energy decreases linearly as a function of the angular momentum in agreement with previous numerical and limiting analytical studies.Comment: 3 pages, RevTe

    Shape deformations and angular momentum transfer in trapped Bose-Einstein condensates

    Full text link
    Angular momentum can be transferred to a trapped Bose-Einstein condensate by distorting its shape with an external rotating field, provided the rotational frequency is larger than a critical frequency fixed by the energy and angular momentum of the excited states of the system. By using the Gross-Pitaevskii equation and sum rules, we explore the dependence of such a critical frequency on the multipolarity of the excitations and the asymmetry of the confining potential. We also discuss its possible relevance for vortex nucleation in rotating traps.Comment: 4 pages revtex, 2 figures include

    Fractal dimension and degree of order in sequential deposition of mixture

    Full text link
    We present a number models describing the sequential deposition of a mixture of particles whose size distribution is determined by the power-law p(x)∼αxα−1p(x) \sim \alpha x^{\alpha-1}, x≤lx\leq l . We explicitly obtain the scaling function in the case of random sequential adsorption (RSA) and show that the pattern created in the long time limit becomes scale invariant. This pattern can be described by an unique exponent, the fractal dimension. In addition, we introduce an external tuning parameter beta to describe the correlated sequential deposition of a mixture of particles where the degree of correlation is determined by beta, while beta=0 corresponds to random sequential deposition of mixture. We show that the fractal dimension of the resulting pattern increases as beta increases and reaches a constant non-zero value in the limit β→∞\beta \to \infty when the pattern becomes perfectly ordered or non-random fractals.Comment: 16 pages Latex, Submitted to Phys. Rev.

    Generating ring currents, solitons, and svortices by stirring a Bose-Einstein condensate in a toroidal trap

    Full text link
    We propose a simple stirring experiment to generate quantized ring currents and solitary excitations in Bose-Einstein condensates in a toroidal trap geometry. Simulations of the 3D Gross-Pitaevskii equation show that pure ring current states can be generated efficiently by adiabatic manipulation of the condensate, which can be realized on experimental time scales. This is illustrated by simulated generation of a ring current with winding number two. While solitons can be generated in quasi-1D tori, we show the even more robust generation of hybrid, solitonic vortices (svortices) in a regime of wider confinement. Svortices are vortices confined to essentially one-dimensional dynamics, which obey a similar phase-offset--velocity relationship as solitons. Marking the transition between solitons and vortices, svortices are a distinct class of symmetry-breaking stationary and uniformly rotating excited solutions of the 2D and 3D Gross-Pitaevskii equation in a toroidal trapping potential. Svortices should be observable in dilute-gas experiments.Comment: 8 pages, 4 figures; accepted for publication in J. Phys. B (Letters
    • …
    corecore