2 research outputs found

    Augmented reality for minimally invasive spinal surgery

    Get PDF
    BackgroundAugmented reality (AR) is an emerging technology that can overlay computer graphics onto the real world and enhance visual feedback from information systems. Within the past several decades, innovations related to AR have been integrated into our daily lives; however, its application in medicine, specifically in minimally invasive spine surgery (MISS), may be most important to understand. AR navigation provides auditory and haptic feedback, which can further enhance surgeons’ capabilities and improve safety.PurposeThe purpose of this article is to address previous and current applications of AR, AR in MISS, limitations of today's technology, and future areas of innovation.MethodsA literature review related to applications of AR technology in previous and current generations was conducted.ResultsAR systems have been implemented for treatments related to spinal surgeries in recent years, and AR may be an alternative to current approaches such as traditional navigation, robotically assisted navigation, fluoroscopic guidance, and free hand. As AR is capable of projecting patient anatomy directly on the surgical field, it can eliminate concern for surgeon attention shift from the surgical field to navigated remote screens, line-of-sight interruption, and cumulative radiation exposure as the demand for MISS increases.ConclusionAR is a novel technology that can improve spinal surgery, and limitations will likely have a great impact on future technology

    Anterior cervical osteotomy of diffuse idiopathic skeletal hyperostosis lesions with computer‐assisted navigation surgery: A case report

    No full text
    Key Clinical Message Diffuse idiopathic skeletal hyperostosis (DISH) involves spine ligament ossification. Computer‐assisted navigation (CAN) effectively aids complex surgeries, such as anterior cervical osteotomy, to alleviate progressive DISH‐related dysphagia. Abstract We describe a 68‐year‐old man with sudden onset dysphagia to both solids and liquids. Radiographic Imaging revealed DISH lesions from C2 down to the thoracic spine. The patient was successfully treated with CAN anterior osteotomy and resection of DISH lesions from C3–C6 and had complete symptom relief within 2 weeks post‐operatively
    corecore