14 research outputs found

    Molecular population divergence and sexual selection on morphology in the banded demoiselle (Calopteryx splendens)

    No full text
    The importance of sexual selection in population divergence is of much interest, mainly because it is thought to cause reproductive isolation and hence could lead to speciation. Sexually selected traits have been hypothesized to diverge faster between populations than other traits, presumably because of differences in the strength, mechanism or dynamics of selection. We investigated this by quantifying population divergence in eight morphological characters in 12 south Swedish populations of a sexually dimorphic damselfly, the banded demoiselle (Calopteryx splendens). The morphological characters included a secondary sexual character, the male melanized wing spot, which has an important function in both inter- and intrasexual selection. In addition, we investigated molecular population divergence, revealed by amplified fragment length polymorphism (AFLP) analysis. Molecular population divergence was highly significant among these Northern European populations ( overall Fst = 0.054; pairwise population Fst's ranged from apprx0 to 0.13). We found evidence for isolation-by-distance (r = 0.70) for the molecular markers and a significant correlation between molecular and phenotypic population divergence (r = 0.39). One interpretation is that population divergence for the AFLP loci are affected by genetic drift, but is also indirectly influenced by selection, due to linkage with loci for the phenotypic traits. Field estimates of sexual and natural selection from two of the populations revealed fairly strong sexual selection on wing spot length, indicating that this trait has the potential to rapidly diverge, provided that variation is heritable and the observed selection is chronic

    The contribution of groundwater discharge to nutrient exports from a coastal catchment: post flood seepage increases estuarine N/P ratios

    No full text
    Four months of daily nutrient and radon (a natural groundwater tracer) observations at the outlet of a heavily drained coastal wetland illustrated how episodic floods and diffuse groundwater seepage influence the biogeochemistry of a sub-tropical estuary (Richmond River, New South Wales, Australia). Our observations downstream of the Tuckean Swamp (an acid sulphate soil floodplain) covered a dry stage, a flood triggered by a 213-mm rain event and a post-flood stage when surface water chemistry was dominated by groundwater discharge. Significant correlations were found between radon and ammonium and N/P ratios and between radon and dissolved organic nitrogen (DON) during the post-flood stage. While the flood lasted for 14 % of the time of the surface water time series, it accounted for 18 % of NH4, 32 % of NO x , 66 % of DON, 58 % of PO4 and 55 % of dissolved organic phosphorus (DOP) catchment exports. Over the 4-month study period, groundwater fluxes of 35.0, 3.6, 36.3, 0.5 and 0.7 mmol m−2 day−1 for NH4, NO x , DON, PO4 and DOP, respectively, were estimated. The groundwater contribution to the total surface water catchment exports was nearly 100 % for ammonium, and% for the other nutrients. Post-flood groundwater seepage shifted the system from a DON to a dissolved inorganic N-dominated system and doubled N/P ratios in surface waters. We hypothesise that the Richmond River Estuary N/P ratios may reflect a widespread trend of tidal rivers and estuaries becoming more groundwater-dominated and phosphorus-limited as coastal wetlands are drained for agriculture, grazing and development
    corecore