3 research outputs found

    Survival and longevity of European rulers: geographical influences and exploring potential factors, including the Mediterranean diet - a historical analysis from 1354 to the twentieth century

    Get PDF
    Significant regional variability in lifespan in Europe is influenced by environmental factors and lifestyle behaviors, including diet. This study investigates the impact of geographical region on the lifespan of European rulers spanning from the fourteenth century to the present day. By analyzing historical records and literature, we aim to identify region-specific dietary patterns and lifestyle factors that may have contributed to longer lifespans among rulers. The hypothesis to be tested is that rulers from Southern European countries, where the traditional Mediterranean diet is consumed by the local people, may exhibit longer lifespans compared to rulers from other regions, due to the well-documented health benefits associated with this dietary pattern. We extracted comprehensive information for each ruler, encompassing their sex, birth and death dates, age, age of enthronement, duration of rulership, country, and cause of death (natural vs. non-natural). To determine their nationality, we coded rulers based on their hypothetical present-day residence (2023). Utilizing the EuroVoc Geographical classification, we categorized the countries into four regions: Northern, Western, Southern, Central and Eastern Europe. While Cox regression models did not find significant differences in survival rates among regions, further analysis stratified by time periods revealed intriguing trends. Contrary to our initial predictions, the Northern region displayed better survival rates compared to the Southern region between 1354 and 1499, whereas survival rates were similar across regions from 1500 to 1749. However, after 1750, all regions, except the Southern region, exhibited significantly improved survival rates, suggesting advancements in healthcare and lifestyle factors. These findings underscore the dynamic influence of both region and time period on health and longevity. Interestingly, despite the prevalence of the Mediterranean diet in the Southern region of Europe, rulers from this region did not demonstrate longer lifespans compared to their counterparts in other regions. This suggests that additional lifestyle factors may have played a more prominent role in their longevity. In conclusion, our study sheds light on the intricate relationship between region, time period, and lifespan among European rulers. Although the Mediterranean diet is often associated with health benefits, our findings indicate that it alone may not account for differences in ruler longevity across regions. Further research is warranted to explore the impact of other lifestyle factors on the health and lifespan of European rulers throughout history

    Exposome and unhealthy aging: environmental drivers from air pollution to occupational exposures

    Get PDF
    The aging population worldwide is facing a significant increase in age-related non-communicable diseases, including cardiovascular and brain pathologies. This comprehensive review paper delves into the impact of the exposome, which encompasses the totality of environmental exposures, on unhealthy aging. It explores how environmental factors contribute to the acceleration of aging processes, increase biological age, and facilitate the development and progression of a wide range of age-associated diseases. The impact of environmental factors on cognitive health and the development of chronic age-related diseases affecting the cardiovascular system and central nervous system is discussed, with a specific focus on Alzheimer’s disease, Parkinson’s disease, stroke, small vessel disease, and vascular cognitive impairment (VCI). Aging is a major risk factor for these diseases. Their pathogenesis involves cellular and molecular mechanisms of aging such as increased oxidative stress, impaired mitochondrial function, DNA damage, and inflammation and is influenced by environmental factors. Environmental toxicants, including ambient particulate matter, pesticides, heavy metals, and organic solvents, have been identified as significant contributors to cardiovascular and brain aging disorders. These toxicants can inflict both macro- and microvascular damage and many of them can also cross the blood–brain barrier, inducing neurotoxic effects, neuroinflammation, and neuronal dysfunction. In conclusion, environmental factors play a critical role in modulating cardiovascular and brain aging. A deeper understanding of how environmental toxicants exacerbate aging processes and contribute to the pathogenesis of neurodegenerative diseases, VCI, and dementia is crucial for the development of preventive strategies and interventions to promote cardiovascular, cerebrovascular, and brain health. By mitigating exposure to harmful environmental factors and promoting healthy aging, we can strive to reduce the burden of age-related cardiovascular and brain pathologies in the aging population
    corecore